Reputation: 1330
I have the data in the below dataframe as:-
id name value year quarter
1 an 2.3 2012 1
2 yu 3.5 2012 2
3 ij 3.1 2013 4
4 ij 2.1 2013 1
to be converted to below dataframe i.e. get month from quarter and split row into 3.
id name value year quarter month
1 an 2.3 2012 1 01
1 an 2.3 2012 1 02
1 an 2.3 2012 1 03
2 yu 3.5 2012 2 04
2 yu 3.5 2012 2 05
2 yu 3.5 2012 2 06
3 ij 3.1 2013 4 10
3 ij 3.1 2013 4 11
3 ij 3.1 2013 4 12
4 ij 2.1 2013 1 01
4 ij 2.1 2013 1 02
4 ij 2.1 2013 1 03
Upvotes: 3
Views: 733
Reputation: 323246
Using reindex
with pd.to_datetime
, and we adding the cumcount
for each sub group
df=df.reindex(df.index.repeat(3))
df['Month']=pd.to_datetime(df[['year','quarter']].astype(str).apply('Q'.join,1)).dt.month+df.groupby(level=0).cumcount()
df
Out[1258]:
id name value year quarter Month
0 1 an 2.3 2012 1 1
0 1 an 2.3 2012 1 2
0 1 an 2.3 2012 1 3
1 2 yu 3.5 2012 2 4
1 2 yu 3.5 2012 2 5
1 2 yu 3.5 2012 2 6
2 3 ij 3.1 2013 4 10
2 3 ij 3.1 2013 4 11
2 3 ij 3.1 2013 4 12
Upvotes: 1
Reputation: 51155
First, create a DataFrame with the month ranges of each quarter in your current DataFrame:
m = pd.DataFrame([range(i*3-2, 3*i+1) for i in df.quater], index=df.quater)
0 1 2
quater
1 1 2 3
2 4 5 6
4 10 11 12
Now join and stack:
df.set_index('quater').join(m.stack().reset_index(1, drop=True).rename('month'))
id name value year month
quater
1 1 an 2.3 2012 1
1 1 an 2.3 2012 2
1 1 an 2.3 2012 3
2 2 yu 3.5 2012 4
2 2 yu 3.5 2012 5
2 2 yu 3.5 2012 6
4 3 ij 3.1 2013 10
4 3 ij 3.1 2013 11
4 3 ij 3.1 2013 12
Upvotes: 2
Reputation: 76917
You could use repeat
In [360]: dff = df.loc[df.index.repeat(3)]
In [362]: dff.assign(month = dff.quater.sub(1) * 3 + dff.groupby('quater').cumcount() + 1)
Out[362]:
id name value year quater month
0 1 an 2.3 2012 1 1
0 1 an 2.3 2012 1 2
0 1 an 2.3 2012 1 3
1 2 yu 3.5 2012 2 4
1 2 yu 3.5 2012 2 5
1 2 yu 3.5 2012 2 6
2 3 ij 3.1 2013 4 10
2 3 ij 3.1 2013 4 11
2 3 ij 3.1 2013 4 12
Upvotes: 2
Reputation: 294278
Create a quarter to month dataframe to merge on
q2m = pd.DataFrame([
[(m - 1) // 3 + 1, m] for m in range(1, 13)],
columns=['quarter', 'month']
)
df.merge(q2m)
id name value year quarter month
0 1 an 2.3 2012 1 1
1 1 an 2.3 2012 1 2
2 1 an 2.3 2012 1 3
3 2 yu 3.5 2012 2 4
4 2 yu 3.5 2012 2 5
5 2 yu 3.5 2012 2 6
6 3 ij 3.1 2013 4 10
7 3 ij 3.1 2013 4 11
8 3 ij 3.1 2013 4 12
Upvotes: 3