Reputation: 527
I have a DataFrame with a time series like so:
timestamp v IceCreamOrder Location
2018-01-03 02:21:16 Chocolate South
2018-01-03 12:41:12 Vanilla North
2018-01-03 14:32:15 Strawberry North
2018-01-03 15:32:15 Strawberry North
2018-01-04 02:21:16 Strawberry North
2018-01-04 02:21:16 Rasberry North
2018-01-04 12:41:12 Vanilla North
2018-01-05 15:32:15 Chocolate North
And I want to get the counts like this:
timestamp strawberry chocolate
1/2/14 0 1
1/3/14 2 0
1/4/14 1 0
1/4/14 0 0
1/4/14 0 0
1/5/14 0 1
Since this is time series data, I've been storing the timestamp in pandas datetimeindex format.
I started by trying to get the counts for 'strawberry'. I ended up with this code that doesn't work.
mydf = (inputdf.set_index('timestamp').groupby(pd.Grouper(freq = 'D'))['IceCreamOrder'].count('Strawberry'))
Which results in an error:
TypeError: count() takes 1 positional argument but 2 were given
Any help would be greatly appreciated.
Upvotes: 2
Views: 920
Reputation: 51155
Using pivot_table
:
df.pivot_table(
index='timestamp', columns='IceCreamOrder', aggfunc='size'
).fillna(0).astype(int)
IceCreamOrder Chocolate Rasberry Strawberry Vanilla
timestamp
2018-01-02 1 0 0 0
2018-01-03 0 0 2 1
2018-01-04 0 1 1 1
2018-01-05 1 0 0 0
Or crosstab
:
pd.crosstab(df.timestamp, df.IceCreamOrder)
IceCreamOrder Chocolate Rasberry Strawberry Vanilla
timestamp
2018-01-02 1 0 0 0
2018-01-03 0 0 2 1
2018-01-04 0 1 1 1
2018-01-05 1 0 0 0
if your timestamp
column has times, simply remove them before using these operations using dt.date
(if you don't want to modify the column, perhaps create a new Series to use for pivoting):
df.timestamp = df.timestamp.dt.date
Upvotes: 3
Reputation: 862711
Use eq
(==
) for compare column by string
and aggregate sum
for count True
values, because True
s are processes like 1
s:
#convert to datetimes if necessary
inputdf['timestamp'] = pd.to_datetime(inputdf['timestamp'], format='%m/%d/%y')
print (inputdf)
timestamp IceCreamOrder Location
0 2018-01-02 Chocolate South
1 2018-01-03 Vanilla North
2 2018-01-03 Strawberry North
3 2018-01-03 Strawberry North
4 2018-01-04 Strawberry North
5 2018-01-04 Rasberry North
6 2018-01-04 Vanilla North
7 2018-01-05 Chocolate North
mydf = (inputdf.set_index('timestamp')['IceCreamOrder']
.eq('Strawberry')
.groupby(pd.Grouper(freq = 'D'))
.sum())
print (mydf)
timestamp
2018-01-02 0.0
2018-01-03 2.0
2018-01-04 1.0
2018-01-05 0.0
Freq: D, Name: IceCreamOrder, dtype: float64
If want count all type
s add column IceCreamOrder
to groupby
and aggregate GroupBy.size
:
mydf1 = (inputdf.set_index('timestamp')
.groupby([pd.Grouper(freq = 'D'), 'IceCreamOrder'])
.size())
print (mydf1)
timestamp IceCreamOrder
2018-01-02 Chocolate 1
2018-01-03 Strawberry 2
Vanilla 1
2018-01-04 Rasberry 1
Strawberry 1
Vanilla 1
2018-01-05 Chocolate 1
dtype: int64
mydf1 = (inputdf.set_index('timestamp')
.groupby([pd.Grouper(freq = 'D'),'IceCreamOrder'])
.size()
.unstack(fill_value=0))
print (mydf1)
IceCreamOrder Chocolate Rasberry Strawberry Vanilla
timestamp
2018-01-02 1 0 0 0
2018-01-03 0 0 2 1
2018-01-04 0 1 1 1
2018-01-05 1 0 0 0
If all datetime
s have no time
s:
mydf1 = (inputdf.groupby(['timestamp', 'IceCreamOrder'])
.size()
.unstack(fill_value=0))
print (mydf1)
IceCreamOrder Chocolate Rasberry Strawberry Vanilla
timestamp
2018-01-02 1 0 0 0
2018-01-03 0 0 2 1
2018-01-04 0 1 1 1
2018-01-05 1 0 0 0
Upvotes: 3