Reputation: 1
This is my first post to SO, so please forgive my transgressions. I have a dataframe for which I make a categorical index using cut
. I then add the missing intervals, like so
n = np.arange(6)
a = [0. , 0.5, 0.7, 0.9, 1. ]
b = [0. , 1. , 2.5, 2.5, 5. ]
df = pd.DataFrame({'a':a, 'b':b} )
df.set_index(pd.cut(df.b, n), inplace=True)
bins = pd.interval_range(0, 5)
df = df.reindex(bins)
a b
b
(0, 1] 0.5 1.0
(1, 2] NaN NaN
(2, 3] 0.7 2.5
(2, 3] 0.9 2.5
(3, 4] NaN NaN
(4, 5] 1.0 5.0
I want to backfill the NaNs in each column but the argument method
is not implemented for CategoricalIndex.reindex. Is there another way to accomplish this? I'm using Pandas 0.22.0
Upvotes: 0
Views: 238
Reputation: 4607
You can use fillna function in pandas with mentioning backfill
df.fillna(method='bfill')
Upvotes: 1