Reputation: 2611
There is a good compilation of trajectory math in wikipedia.
But I need to calculate a trajectory that has non uniform conditions. E.g. the wind speed changes above certain altitude. (Cannot be modeled easily.)
Should I calculate projectile's velocity vector e.g. every second and then for the next second based on that (having small enough tdelta)
Or should I try to split the trajectory into pieces - based on the parameters (e.g. wind is vwind 1 between y1 and y2 so I calculate for y<y1, y1≤y<y2 and y2≤y separately).
Try to build and solve a symbolic equation - run time - with all the parameters modeled. (Is this completely utopistic? Traditional programmin languages aren't too good solving symbols.)
Something completely different... ?
Are there good languages / frameworks for handling symbolic math?
Upvotes: 2
Views: 1880
Reputation: 126787
I'd suggest an "improved" first approach: solve the differential equations of motion numerically with e.g. the classic Runge-Kutta method.
The nice part is that with these algorithms, once you correctly set up your framework, you just have to write an "evaluate" function for the motion law (which can be almost anything - you don't need to restrict to particular forces), and everything should work fine (as far as the integration step is adequate).
Upvotes: 2
Reputation: 99094
If the conditions really are cleanly divided into two domains like that, then the second approach is probably best. The first approach is both imprecise and overkill, and the third, if done right, will wind up being equivalent to the second.
Upvotes: 1