Reputation: 3719
I would like to produce two confusion matrix and only show one colorbar. I am basically trying to merge this scikit-learn code with this answer.
My code looks like this:
import numpy as np
import matplotlib.pyplot as plt
fig, axes = plt.subplots(nrows=1, ncols=2)
classes = ["A", "B"]
for i, ax in enumerate(axes.flat):
cm = np.random.random((2,2))
im = ax.imshow(cm, vmin=0, vmax=1)
plt.title("Title {}".format(i))
tick_marks = np.arange(2)
plt.xticks(tick_marks, classes, rotation=45)
plt.yticks(tick_marks, classes)
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, format(cm[i, j], '.5f'),
horizontalalignment="center",
color="white")
plt.ylabel('True label')
plt.xlabel('Predicted label')
plt.tight_layout()
fig.subplots_adjust(right=0.8)
cbar_ax = fig.add_axes([0.88, 0.15, 0.05, 0.6])
fig.colorbar(im, cax=cbar_ax)
plt.show()
So everything is being plotted on the last image. Two questions:
Upvotes: 0
Views: 3135
Reputation: 40717
All your elements are plotted on the last image because you are mixing up the pyplot
(plt.xxxxx()
) interface with the object-oriented interface. Refer to this question or this one for some explanations.
For the colorbar, there are many ways to get a properly sized colorbar (e.g. playing with GridSpec, AxisDivider as suggested by @DavidG). Because you have two axes using imshow
, I would recommend using ImageGrid
instead, as per this answer to a similar question.
Your code should read:
import itertools
from mpl_toolkits.axes_grid1 import ImageGrid
classes = ["A", "B"]
fig = plt.figure()
grid = ImageGrid(fig, 111, # as in plt.subplot(111)
nrows_ncols=(1,2),
axes_pad=0.15,
cbar_location="right",
cbar_mode="single",
cbar_size="7%",
cbar_pad=0.15,
)
for i, ax in enumerate(grid[:2]):
cm = np.random.random((2,2))
im = ax.imshow(cm, vmin=0, vmax=1)
ax.set_title("Title {}".format(i)) # ax.___ instead of plt.___
tick_marks = np.arange(2)
ax.set_xticks(tick_marks) # Warning: different signature for [x|y]ticks in pyplot and OO interface
ax.set_xticklabels(classes, rotation=45)
ax.set_yticks(tick_marks)
ax.set_yticklabels(classes)
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
ax.text(j, i, format(cm[i, j], '.5f'),
horizontalalignment="center",
color="white")
ax.set_ylabel('True label')
ax.set_xlabel('Predicted label')
fig.tight_layout()
fig.subplots_adjust(right=0.8)
fig.colorbar(im, cax=ax.cax)
plt.show()
Upvotes: 4