Reputation: 414
I have a dataframe as follows:
Slot Time Last Next
1 9:30 9:37
2 9:35 9:32 9:40
3 9:40 9:37 9:52
4 9:45 9:41 9:47
5 9:50 9:47 10:00
What I want to do here is to create two new columns 'min' and 'max', such that 'min' outputs the last possible slot with time < last; and 'max' outputs the last possible slot with time < next.
The desired output here should be:
df['min'] = [NaN,1,2,3,4]
and
df['max'] = [2,2,5,4,5]
I tried something along the lines of
for index, row in df.iterrows():
row['min'] = df[df['Time'] < row['Last']]['Slot']
but got an empty list. Any help is greatly appreciated. Thanks!
Upvotes: 5
Views: 84
Reputation: 164773
This is an occasion when numba
can be helpful in providing an efficient solution. This is an explicit for
loop, but JIT-compiled for performance.
from numba import njit
# convert to timedelta
time_cols = ['Time','Last','Next']
df[time_cols] = (df[time_cols] + ':00').apply(pd.to_timedelta)
# define loopy algorithm
@njit
def get_idx(times, comps, slots):
n = len(times)
res = np.empty(n)
for i in range(n):
mycomp = comps[i]
if mycomp != mycomp:
res[i] = np.nan
else:
for j in range(n, 0, -1):
if times[j-1] < mycomp:
res[i] = slots[j-1]
break
else:
res[i] = np.nan
return res
# extract timedeltas as seconds
arr = df[time_cols].apply(lambda x: x.dt.total_seconds()).values
# apply logic
df['min'] = get_idx(arr[:, 0], arr[:, 1], df['Slot'].values)
df['max'] = get_idx(arr[:, 0], arr[:, 2], df['Slot'].values)
Result
print(df)
Slot Time Last Next min max
0 1 09:30:00 NaT 09:37:00 NaN 2.0
1 2 09:35:00 09:32:00 09:40:00 1.0 2.0
2 3 09:40:00 09:37:00 09:52:00 2.0 5.0
3 4 09:45:00 09:41:00 09:47:00 3.0 4.0
4 5 09:50:00 09:47:00 10:00:00 4.0 5.0
Performance benchmarking
You can see massive performance improvements for larger dataframes:
def nix(df):
min_vals = [(df['Time'] < x)[::-1].idxmax()
if any(df['Time'] < x) else np.nan for x in df['Last']]
df['min'] = df.loc[min_vals,'Slot'].values
max_vals = [(df['Time'] < x)[::-1].idxmax()
if any(df['Time'] < x) else np.nan for x in df['Next']]
df.loc[:,'max'] = df.loc[max_vals,'Slot'].values
return df
def jpp(df):
arr = df[time_cols].apply(lambda x: x.dt.total_seconds()).values
df['min'] = get_idx(arr[:, 0], arr[:, 1], df['Slot'].values)
df['max'] = get_idx(arr[:, 0], arr[:, 2], df['Slot'].values)
return df
df = pd.concat([df]*1000, ignore_index=True)
%timeit nix(df.copy()) # 8.85 s per loop
%timeit jpp(df.copy()) # 5.02 ms per loop
Related: Efficiently return the index of the first value satisfying condition in array.
Upvotes: 1
Reputation: 88275
Firstly, I converted the date columns to datetime format, otherwise when you compare the strings, it only considers the first digit:
df = df_.copy()
df.loc[:, 'Time':'Next'] = df.loc[:, 'Time':'Next']
.apply(pd.to_datetime, errors='coerce')
For the min
column you can do:
min_vals = [(df['Time'] < x)[::-1].idxmax()
if any(df['Time'] < x) else np.nan for x in df['Last']]
df_['min'] = df.loc[min_vals,'Slot'].values
And for the max
:
max_vals = [(df['Time'] < x)[::-1].idxmax()
if any(df['Time'] < x) else np.nan for x in df['Next']]
df_.loc[:,'max'] = df.loc[max_vals,'Slot'].values
Which would give you:
print(df_)
Slot Time Last Next min max
0 1 9:30 - 9:37 NaN 2
1 2 9:35 9:32 9:40 1.0 2
2 3 9:40 9:37 9:52 2.0 5
3 4 9:45 9:41 9:47 3.0 4
4 5 9:50 9:47 10:00 4.0 5
Upvotes: 2
Reputation: 11192
I tried this,
x=[]
y=[]
for index, row in df.iterrows():
t=df[df['Time'] < row['Last']]['Slot'].values
s=df[df['Time'] < row['Next']]['Slot'].values
if len(t)==0:
x.append(np.nan)
else:
x.append(t[-1])
if len(s)==0:
y.append(np.nan)
else:
y.append(s[-1])
df['min']=x
df['max']=y
print df
O/P:
Slot Time Last Next min max
0 1 2018-11-30 09:30:00 NaT 2018-11-30 09:37:00 NaN 2
1 2 2018-11-30 09:35:00 2018-11-30 09:32:00 2018-11-30 09:40:00 1.0 2
2 3 2018-11-30 09:40:00 2018-11-30 09:37:00 2018-11-30 09:52:00 2.0 5
3 4 2018-11-30 09:45:00 2018-11-30 09:41:00 2018-11-30 09:47:00 3.0 4
4 5 2018-11-30 09:50:00 2018-11-30 09:47:00 2018-11-30 10:00:00 4.0 5
Note: It's a not a pandas way to solve this, as you attempted in loop, I suggest gave an idea to solve in for loop. It lags in performance.
Upvotes: 1