Adrian Y
Adrian Y

Reputation: 414

Finding last possible index value to satisfy filtering requirements

I have a dataframe as follows:

Slot      Time     Last      Next
1         9:30               9:37
2         9:35     9:32      9:40
3         9:40     9:37      9:52
4         9:45     9:41      9:47
5         9:50     9:47      10:00

What I want to do here is to create two new columns 'min' and 'max', such that 'min' outputs the last possible slot with time < last; and 'max' outputs the last possible slot with time < next.

The desired output here should be:

df['min'] = [NaN,1,2,3,4]

and

df['max'] = [2,2,5,4,5]

I tried something along the lines of

for index, row in df.iterrows():
    row['min'] = df[df['Time'] < row['Last']]['Slot']

but got an empty list. Any help is greatly appreciated. Thanks!

Upvotes: 5

Views: 84

Answers (3)

jpp
jpp

Reputation: 164773

This is an occasion when numba can be helpful in providing an efficient solution. This is an explicit for loop, but JIT-compiled for performance.

from numba import njit

# convert to timedelta
time_cols = ['Time','Last','Next']
df[time_cols] = (df[time_cols] + ':00').apply(pd.to_timedelta)

# define loopy algorithm
@njit
def get_idx(times, comps, slots):
    n = len(times)
    res = np.empty(n)
    for i in range(n):
        mycomp = comps[i]
        if mycomp != mycomp:
            res[i] = np.nan
        else:
            for j in range(n, 0, -1):
                if times[j-1] < mycomp:
                    res[i] = slots[j-1]
                    break
            else:
                res[i] = np.nan
    return res

# extract timedeltas as seconds    
arr = df[time_cols].apply(lambda x: x.dt.total_seconds()).values

# apply logic    
df['min'] = get_idx(arr[:, 0], arr[:, 1], df['Slot'].values)
df['max'] = get_idx(arr[:, 0], arr[:, 2], df['Slot'].values)

Result

print(df)

   Slot     Time     Last     Next  min  max
0     1 09:30:00      NaT 09:37:00  NaN  2.0
1     2 09:35:00 09:32:00 09:40:00  1.0  2.0
2     3 09:40:00 09:37:00 09:52:00  2.0  5.0
3     4 09:45:00 09:41:00 09:47:00  3.0  4.0
4     5 09:50:00 09:47:00 10:00:00  4.0  5.0

Performance benchmarking

You can see massive performance improvements for larger dataframes:

def nix(df):
    min_vals = [(df['Time'] < x)[::-1].idxmax() 
           if any(df['Time'] < x) else np.nan for x in df['Last']]
    df['min'] = df.loc[min_vals,'Slot'].values

    max_vals = [(df['Time'] < x)[::-1].idxmax() 
               if any(df['Time'] < x) else np.nan for x in df['Next']]
    df.loc[:,'max'] = df.loc[max_vals,'Slot'].values
    return df

def jpp(df):
    arr = df[time_cols].apply(lambda x: x.dt.total_seconds()).values
    df['min'] = get_idx(arr[:, 0], arr[:, 1], df['Slot'].values)
    df['max'] = get_idx(arr[:, 0], arr[:, 2], df['Slot'].values)
    return df

df = pd.concat([df]*1000, ignore_index=True)

%timeit nix(df.copy())  # 8.85 s per loop
%timeit jpp(df.copy())  # 5.02 ms per loop

Related: Efficiently return the index of the first value satisfying condition in array.

Upvotes: 1

yatu
yatu

Reputation: 88275

Firstly, I converted the date columns to datetime format, otherwise when you compare the strings, it only considers the first digit:

df = df_.copy()
df.loc[:, 'Time':'Next'] = df.loc[:, 'Time':'Next']
                             .apply(pd.to_datetime, errors='coerce')

For the min column you can do:

min_vals = [(df['Time'] < x)[::-1].idxmax() 
           if any(df['Time'] < x) else np.nan for x in df['Last']]
df_['min'] = df.loc[min_vals,'Slot'].values

And for the max :

max_vals = [(df['Time'] < x)[::-1].idxmax() 
           if any(df['Time'] < x) else np.nan for x in df['Next']]
df_.loc[:,'max'] = df.loc[max_vals,'Slot'].values

Which would give you:

print(df_)

    Slot  Time  Last   Next  min  max
0     1  9:30     -   9:37  NaN    2
1     2  9:35  9:32   9:40  1.0    2
2     3  9:40  9:37   9:52  2.0    5
3     4  9:45  9:41   9:47  3.0    4
4     5  9:50  9:47  10:00  4.0    5

Upvotes: 2

Mohamed Thasin ah
Mohamed Thasin ah

Reputation: 11192

I tried this,

x=[]
y=[]
for index, row in df.iterrows():
    t=df[df['Time'] < row['Last']]['Slot'].values
    s=df[df['Time'] < row['Next']]['Slot'].values
    if len(t)==0:
    x.append(np.nan)
    else:
    x.append(t[-1])

    if len(s)==0:
    y.append(np.nan)
    else:
    y.append(s[-1])
df['min']=x
df['max']=y
print df

O/P:

   Slot                Time                Last                Next  min  max
0     1 2018-11-30 09:30:00                 NaT 2018-11-30 09:37:00  NaN    2
1     2 2018-11-30 09:35:00 2018-11-30 09:32:00 2018-11-30 09:40:00  1.0    2
2     3 2018-11-30 09:40:00 2018-11-30 09:37:00 2018-11-30 09:52:00  2.0    5
3     4 2018-11-30 09:45:00 2018-11-30 09:41:00 2018-11-30 09:47:00  3.0    4
4     5 2018-11-30 09:50:00 2018-11-30 09:47:00 2018-11-30 10:00:00  4.0    5

Note: It's a not a pandas way to solve this, as you attempted in loop, I suggest gave an idea to solve in for loop. It lags in performance.

Upvotes: 1

Related Questions