Reputation: 197
This is my sample data frame with data about orders:
import pandas as pd
my_dict = {
'status' : ["a", "b", "c", "d", "a","a", "d"],
'city' : ["London","Berlin","Paris", "Berlin", "Boston", "Paris", "Boston"],
'components': ["a01, a02, b01, b07, b08, с03, d07, e05, e06",
"a01, b02, b35, b68, с43, d02, d07, e04, e05, e08",
"a02, a05, b08, с03, d02, d06, e04, e05, e06",
"a03, a26, a28, a53, b08, с03, d02, f01, f24",
"a01, a28, a46, b37, с43, d06, e04, e05, f02",
"a02, a05, b35, b68, с43, d02, d07, e04, e05, e08",
"a02, a03, b08, b68, с43, d06, d07, e04, e05, e08"]
}
df = pd.DataFrame(my_dict)
df
I need to count most frequent:
What will be the best way to do it?
I can see the relation to market basket analysis problem as well, but not sure how to do it.
Upvotes: 0
Views: 1265
Reputation: 81594
@ScottBoston's answer shows vectorized (hence probably faster) ways to achieve this.
Top occurring
from collections import Counter
from itertools import chain
n = 3
individual_components = chain.from_iterable(df['components'].str.split(', '))
counter = Counter(individual_components)
print(counter.most_common(n))
# [('e05', 6), ('e04', 5), ('a02', 4)]
Top-n co-occuring
Note that I'm using n
twice, once for "the size of the co-occurrence" and once for the "top-n" part. Obviously, you can use 2 different variables.
from collections import Counter
from itertools import combinations
n = 3
individual_components = []
for components in df['components']:
order_components = sorted(components.split(', '))
individual_components.extend(combinations(order_components, n))
counter = Counter(individual_components)
print(counter.most_common(n))
# [(('e04', 'e05', 'с43'), 4), (('a02', 'b08', 'e05'), 3), (('a02', 'd07', 'e05'), 3)]
Upvotes: 2
Reputation: 153460
Here are some more "pandas" ways of doing the same thing:
To get top three components
#Using list comprehension usually faster than .str accessor in pandas
pd.concat([pd.Series(i.split(',')) for i in df.components]).value_counts().head(3)
#OR using "pure" pandas methods
df.components.str.split(',', expand=True).stack().value_counts().head(3)
Output:
e05 6
e04 5
d02 4
dtype: int64
Next find cohorts, 3 components reported together n=3:
from itertools import combinations
n=3
pd.concat([pd.Series(list(combinations(i.split(','), n))) for i in df.components])\
.value_counts().head(3)
Output:
( с43, e04, e05) 4
(a02, e04, e05) 3
( с43, d07, e05) 3
dtype: int64
Upvotes: 3