Reputation: 2618
I have created a Pandas Dataframe and am able to determine the standard deviation of one or more columns of this dataframe (column level). I need to determine the standard deviation for all the rows of a particular column. Below are the commands that I have tried so far
# Will determine the standard deviation of all the numerical columns by default.
inp_df.std()
salary 8.194421e-01
num_months 3.690081e+05
no_of_hours 2.518869e+02
# Same as above command. Performs the standard deviation at the column level.
inp_df.std(axis = 0)
# Determines the standard deviation over only the salary column of the dataframe.
inp_df[['salary']].std()
salary 8.194421e-01
# Determines Standard Deviation for every row present in the dataframe. But it
# does this for the entire row and it will output values in a single column.
# One std value for each row.
inp_df.std(axis=1)
0 4.374107e+12
1 4.377543e+12
2 4.374026e+12
3 4.374046e+12
4 4.374112e+12
5 4.373926e+12
When I execute the below command I am getting "NaN" for all the records. Is there a way to resolve this?
# Trying to determine standard deviation only for the "salary" column at the
# row level.
inp_df[['salary']].std(axis = 1)
0 NaN
1 NaN
2 NaN
3 NaN
4 NaN
Upvotes: 6
Views: 7306
Reputation: 862511
It is expected, because if checking DataFrame.std
:
Normalized by N-1 by default. This can be changed using the ddof argument
If you have one element, you're doing a division by 0. So if you have one column and want the sample standard deviation over columns, get all the missing values.
Sample:
inp_df = pd.DataFrame({'salary':[10,20,30],
'num_months':[1,2,3],
'no_of_hours':[2,5,6]})
print (inp_df)
salary num_months no_of_hours
0 10 1 2
1 20 2 5
2 30 3 6
Select one column by one []
for Series
:
print (inp_df['salary'])
0 10
1 20
2 30
Name: salary, dtype: int64
Get std
of Series
- get a scalar:
print (inp_df['salary'].std())
10.0
Select one column by double []
for one column DataFrame
:
print (inp_df[['salary']])
salary
0 10
1 20
2 30
Get std
of DataFrame
per index (default value) - get one element Series
:
print (inp_df[['salary']].std())
#same like
#print (inp_df[['salary']].std(axis=0))
salary 10.0
dtype: float64
Get std
of DataFrame
per columns (axis=1) - get all NaNs:
print (inp_df[['salary']].std(axis = 1))
0 NaN
1 NaN
2 NaN
dtype: float64
If changed default ddof=1
to ddof=0
:
print (inp_df[['salary']].std(axis = 1, ddof=0))
0 0.0
1 0.0
2 0.0
dtype: float64
If you want std
by two or more columns:
#select 2 columns
print (inp_df[['salary', 'num_months']])
salary num_months
0 10 1
1 20 2
2 30 3
#std by index
print (inp_df[['salary','num_months']].std())
salary 10.0
num_months 1.0
dtype: float64
#std by columns
print (inp_df[['salary','no_of_hours']].std(axis = 1))
0 5.656854
1 10.606602
2 16.970563
dtype: float64
Upvotes: 6