Reputation: 1219
In the past, I had used the sjp.glmer
from the package sjPlot to visualize the different slopes from a generalized mixed effects model. However, with the new package, I can't figure out how to plot the individual slopes, as in the figure for the probabilities of fixed effects by (random) group level, located here
Here is the code that, I think, should allow for the production of the figure. I just can't seem to get it in the new version of sjPlot
.
library(lme4)
library(sjPlot)
data(efc)
# create binary response
efc$hi_qol = 0
efc$hi_qol[efc$quol_5 > mean(efc$quol_5,na.rm=T)] = 1
# prepare group variable
efc$grp = as.factor(efc$e15relat)
# data frame for 2nd fitted model
mydf <- na.omit(data.frame(hi_qol = as.factor(efc$hi_qol),
sex = as.factor(efc$c161sex),
c12hour = as.numeric(efc$c12hour),
neg_c_7 = as.numeric(efc$neg_c_7),
grp = efc$grp))
# fit 2nd model
fit2 <- glmer(hi_qol ~ sex + c12hour + neg_c_7 + (1|grp),
data = mydf,
family = binomial("logit"))
I have tried to graph the model using the following code.
plot_model(fit2,type="re")
plot_model(fit2,type="prob")
plot_model(fit2,type="eff")
I think that I may be missing a flag, but after reading through the documentation, I can't find out what that flag may be.
Upvotes: 6
Views: 8732
Reputation: 7832
Ben already posted the correct answer. sjPlot uses the ggeffects-package for marginal effects plot, so an alternative would be using ggeffects directly:
ggpredict(fit2, terms = c("c12hour", "grp"), type="re") %>% plot()
There's a new vignette describing how to get marginal effects for mixed models / random effects. However, confidence intervals are currently not available for this plot-type.
The type = "ri.prob"
option in the linked blog-post did not adjust for covariates, that's why I first removed that option and later re-implemented it (correctly) in ggeffects / sjPlot. The confidence intervals shown in the linked blog-post are not correct, either. Once I figure out a way how to obtain CI or prediction intervals, I'll add this option as well.
Upvotes: 3
Reputation: 226627
Looks like this might do what you want:
(pp <- plot_model(fit2,type="pred",
terms=c("c12hour","grp"),pred.type="re"))
type="pred"
: plot predicted valuesterms=c("c12hour", "grp")
: include c12hour
(as the x-axis variable) and grp
in the predictionspred.type="re"
: random effectsI haven't been able to get confidence-interval ribbons yet (tried ci.lvl=0.9
, but no luck ...)
pp+facet_wrap(~group)
comes closer to the plot shown in the linked blog post (each random-effects level gets its own facet ...)
Upvotes: 8