Reputation: 1909
I have a Pandas Dataframe that look like this :
tags value
[tag1, tag2, tag3] 0
[tag2, tag3] 10
[tag1, tag3] 50
...
On this Dataframe, I want to apply a function that, for each tags of each rows, will create a new row with a column 'tag', and a column 'related_tags'. Here is an example of what I am expecting :
tag value related_tags
tag1 0 [tag2, tag3]
tag2 0 [tag1, tag3]
tag3 0 [tag1, tag2]
tag2 10 [tag3]
tag3 10 [tag2]
tag1 50 [tag3]
tag3 50 [tag1]
I am familiar with Spark DataFrames but not with Pandas, is there a simple way to achieve this ?
Upvotes: 5
Views: 1280
Reputation: 323226
This is unnesting problem firstly , after explode the list columns tags
, questions is more clear
newdf=unnesting(df,['tags']).reset_index()
newdf['related_tags']=newdf['index'].map(df.tags)
newdf['related_tags']=[list(set(y)-{x})for x , y in zip(newdf.tags,newdf.related_tags)]
newdf
Out[48]:
index tags value related_tags
0 0 tag1 0 [tag2, tag3]
1 0 tag2 0 [tag3, tag1]
2 0 tag3 0 [tag2, tag1]
3 1 tag2 10 [tag3]
4 1 tag3 10 [tag2]
Data input
df=pd.DataFrame({'tags':[['tag1','tag2','tag3'],['tag2','tag3']],'value':[0,10]})
self-define function
def unnesting(df, explode):
idx=df.index.repeat(df[explode[0]].str.len())
df1=pd.concat([pd.DataFrame({x:np.concatenate(df[x].values)} )for x in explode],axis=1)
df1.index=idx
return df1.join(df.drop(explode,1),how='left')
Upvotes: 4