Reputation: 2156
I'm new to Keras and checked many of the questions related to load model but none of them {e.g. eg1 eg2 } progress me to solve my issue.
sorry for the long post but I want to provide as much data to help you reproduce the error
I running code in google colab
I have a model with following custom loss functions:
def wasserstein_loss(y_true, y_pred):
return K.mean(y_true * y_pred)
def gradient_penalty_loss(y_true, y_pred, averaged_samples, gradient_penalty_weight):
gradients = K.gradients(y_pred, averaged_samples)[0]
gradients_sqr = K.square(gradients)
gradients_sqr_sum = K.sum(gradients_sqr,
axis=np.arange(1, len(gradients_sqr.shape)))
gradient_l2_norm = K.sqrt(gradients_sqr_sum)
gradient_penalty = gradient_penalty_weight * K.square(1 -
gradient_l2_norm)
return K.mean(gradient_penalty)
partial_gp_loss = partial(gradient_penalty_loss,
averaged_samples=averaged_samples,
gradient_penalty_weight=GRADIENT_PENALTY_WEIGHT)
partial_gp_loss.__name__ = 'gradient_penalty' # Functions need names or Keras will throw an error
using the loss functions :
discriminator_model = Model(inputs=[real_samples, generator_input_for_discriminator],
outputs=[discriminator_output_from_real_samples,discriminator_output_from_generator,averaged_samples_out])
discriminator_model.compile(optimizer=Adam(0.0001, beta_1=0.5, beta_2=0.9),
loss=[wasserstein_loss,
wasserstein_loss,
partial_gp_loss])
they way I saved to models :
discriminator_model.save('D_' + str(epoch) + '.h5')
generator_model.save('G_' + str(epoch) + '.h5')
the way I load the models :
generator_model = models.load_model(Gh5files[-1],custom_objects={'wasserstein_loss': wasserstein_loss})
discriminator_model = models.load_model(Dh5files[-1],custom_objects={'wasserstein_loss': wasserstein_loss ,
'RandomWeightedAverage': RandomWeightedAverage ,
'gradient_penalty':partial_gp_loss(gradient_penalty_loss,
averaged_samples=averaged_samples,
gradient_penalty_weight=GRADIENT_PENALTY_WEIGHT)
})
no when I try to upload saved model , I get the following error
Loading pretrained models
about to load follwoing files: ./G_31.h5 ./D_31.h5
/usr/local/lib/python3.6/dist-packages/keras/engine/saving.py:327: UserWarning: Error in loading the saved optimizer state. As a result, your model is starting with a freshly initialized optimizer.
warnings.warn('Error in loading the saved optimizer '
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-30-5ed3e08a8fce> in <module>()
12 'gradient_penalty':partial_gp_loss(gradient_penalty_loss,
13 averaged_samples=averaged_samples,
---> 14 gradient_penalty_weight=GRADIENT_PENALTY_WEIGHT)
15 })
16
TypeError: gradient_penalty_loss() missing 1 required positional argument: 'y_pred'
what am I missing , how can I introduce y_pred ?
Upvotes: 0
Views: 1233
Reputation: 5822
Keras custom loss functions must be of the form my_loss_function(y_true, y_pred)
. Your gradient_penalty_loss
function is invalid since it has additional parameters.
The correct way to do this would be as follows:
def get_gradient_penalty_loss(averaged_samples, gradient_penalty_weight):
def gradient_penalty_loss(y_true, y_pred):
gradients = K.gradients(y_pred, averaged_samples)[0]
gradients_sqr = K.square(gradients)
gradients_sqr_sum = K.sum(gradients_sqr,
axis=np.arange(1, len(gradients_sqr.shape)))
gradient_l2_norm = K.sqrt(gradients_sqr_sum)
gradient_penalty = gradient_penalty_weight * K.square(1 -
gradient_l2_norm)
return K.mean(gradient_penalty)
return gradient_penalty_loss
gradient_penalty_loss= get_gradient_penalty_loss(
gradient_penalty_loss,
averaged_samples=averaged_samples,
gradient_penalty_weight=GRADIENT_PENALTY_WEIGHT)
and then pass models.load_model(..., custom_objects={'gradient_penalty_loss':gradient_penalty_loss})
It almost looks like you might be trying to do something like that with the partial
function, but since you haven't defined it I don't know if that is the case or not.
Either way, there is a further problem in that you are calling partial_gp_loss = partial(...)
which returns gradient_penalty_loss
. Then, when you load the model you call partial_gp_loss(...)
, but at this point you should be calling anything, you should just be passing the function!
You get the error TypeError: gradient_penalty_loss() missing 1 required positional argument: 'y_pred'
because at that point you are trying to execute gradient_penalty_loss
and you are passing two of its named arguments to it (averaged_samples
and gradient_penalty_weight
),in addition to passing one positional argument (which goes to y_true
) and its looking for the second positional argument, y_pred
which is missing.
Upvotes: 1