Reputation: 117
Working on Poisson Distribution, Probability mass function works on discrete values and Cummulative Density Function adds them up (This is what I know correct me if I am wrong please). Since they will differ from each other in values why for X = 1 both have different probabilities? It starts from there so why they are different?
x= np.arange(1,10,1)
y = poisson.pmf(x,4.6)
print(y)
Output: [0.04623844 0.10634842 0.16306758 0.18752772 0.1725255 0.13226955 0.08691999 0.04997899 0.02554482]
x= np.arange(1,10,1)
y = poisson.cdf(x,4.6)
print(y)
Output: [0.05629028 0.1626387 0.32570628 0.513234 0.6857595 0.81802905 0.90494904 0.95492804 0.98047286]
First Values are different. Please Explain.
Upvotes: 0
Views: 37
Reputation: 10872
You are forgetting zero:
>>> poisson.cdf(1, 4.6)
0.056290280169948054
>>> poisson.pmf(0, 4.6) + poisson.pmf(1, 4.6)
0.056290280169948075
So the first element in your cdf()
output is the cumulative of x=0
& x=1
Upvotes: 1
Reputation: 10385
Simple mistake, Poisson distribution is defined on the whole positive number line, from 0 to infinity. You forgot to include the 0 in your calculations.
> dpois(0:10,4.6)
[1] 0.01005184 0.04623844 0.10634842 0.16306758 0.18752772 0.17252550 0.13226955 0.08691999 0.04997899 0.02554482 0.01175062
> ppois(0:10,4.6)
[1] 0.01005184 0.05629028 0.16263870 0.32570628 0.51323400 0.68575950 0.81802905 0.90494904 0.95492804 0.98047286 0.99222347
Upvotes: 1