Reputation:
I would like to solve in Python the following Mixed-Integer Quadratic Programming in Python. Nevertheless, I'm not familiar with the optimization toolboxes of Python.
Can someone provide an example of code with the vectors X1, X2, X3, X4 given as below ?
X1 = np.array([3,10,20,10])
X2 = np.array([5,1,3,4])
X3 = np.array([2,3,1,4])
X4 = np.array([10,0,1,2])
I tried to solve it with CVXPY but i encoutered problem with the boolean
variable x = cp.Variable(1, boolean=True)
:
import numpy
import numpy as np
import cvxpy as cp
X1 = np.array([3,10,20,10])
X2 = np.array([5,1,3,4])
X3 = np.array([2,3,1,4])
X4 = np.array([10,0,1,2])
M = 100
x = cp.Variable(1, boolean=True)
Y1 = cp.Parameter(4)
Y2 = cp.Parameter(4)
a = cp.Parameter(1)
b = cp.Parameter(1)
c = cp.Parameter(1)
d = cp.Parameter(1)
delta = cp.Variable(1)
constraints = [Y1 <= X1 - a,
Y1 <= X2 - b,
Y1 >= X1 - a - M*delta,
Y1 >= X2 - b - M*(1-delta),
Y2 <= X3 - c,
Y2 <= X4 - d,
Y2 >= X3 - c - M*delta,
Y2 >= X4 - d - M*(1-delta),
0 <= a, a <= 10,
0 <= b, b <= 5,
0 <= c, c <= 5,
0 <= d, d <= 10,
delta == x]
obj = cp.Minimize(cp.sum_squares(Y1-Y2))
prob = cp.Problem(obj, constraints)
print(prob.solve())
Upvotes: 1
Views: 1719
Reputation: 14321
Gekko with the APOPT solver can handle MIQP problems in addition to more general Nonlinear Mixed Integer Programming (MINLP). The solution is:
---------------------------------------------------
Solver : APOPT (v1.0)
Solution time : 2.610000000277068E-002 sec
Objective : 70.0000000000000
Successful solution
---------------------------------------------------
x: 1.0
obj: 70.0
Here is the Python script:
import numpy as np
from gekko import GEKKO
m = GEKKO()
X1 = m.Param([3,10,20,10])
X2 = m.Param([5,1,3,4])
X3 = m.Param([2,3,1,4])
X4 = m.Param([10,0,1,2])
M = 100
p = m.Array(m.FV,4,lb=0,ub=10); a,b,c,d=p
b.upper = 5; c.upper = 5
for pi in p:
pi.STATUS=1
x = m.FV(lb=0,ub=1,integer=True); x.STATUS=1
Y1,Y2 = m.Array(m.Var,2)
delta = m.FV(); delta.STATUS=1
m.Equations([Y1 <= X1 - a,
Y1 <= X2 - b,
Y1 >= X1 - a - M*delta,
Y1 >= X2 - b - M*(1-delta),
Y2 <= X3 - c,
Y2 <= X4 - d,
Y2 >= X3 - c - M*delta,
Y2 >= X4 - d - M*(1-delta),
delta == x])
m.Minimize((Y1-Y2)**2)
m.options.IMODE=2
m.options.SOLVER=1
m.solve()
print('x: ', x.value[0])
print('obj: ', m.options.OBJFCNVAL)
Upvotes: 0
Reputation: 7211
In cvxpy
, parameter is something you have a value to set to it. In your problem, basically all symbols other than the X1
to X4
are variables. So do a global replace of cp.Parameter
to cp.Variable
will work.
Then, I found the result to be
$ python3 cvxtest.py
69.99998471073722
Upvotes: 1