Reputation: 23
I'm trying to emulate a system of ODEs (Fig3 B in Tilman, 1994.Ecology, Vol.75,No1,pp-2-16) but Julia Integration method failed to give a solution.
The error is dt <= dtmin. Aborting.
using DifferentialEquations
TFour = @ode_def TilmanFour begin
dp1 = c1*p1*(1-p1) - m*p1
dp2 = c2*p2*(1-p1-p2) -m*p2 -c1*p1*p2
dp3 = c3*p3*(1-p1-p2-p3) -m*p3 -c1*p1*p2 -c2*p2*p3
dp4 = c4*p4*(1-p1-p2-p3-p4) -m*p4 -c1*p1*p2 -c2*p2*p3 -c3*p3*p4
end c1 c2 c3 c4 m
u0 = [0.05,0.05,0.05,0.05]
p = (0.333,3.700,41.150,457.200,0.100)
tspan = (0.0,300.0)
prob = ODEProblem(TFour,u0,tspan,p)
sol = solve(prob,alg_hints=[:stiff])
Upvotes: 2
Views: 459
Reputation: 26040
I think that you read the equations wrong. The last term in the paper is
sum(c[j]*p[j]*p[i] for j<i)
Note that every term in the equation for dp[i]
has a factor p[i]
.
Thus your equations should read
dp1 = p1 * (c1*(1-p1) - m)
dp2 = p2 * (c2*(1-p1-p2) - m - c1*p1)
dp3 = p3 * (c3*(1-p1-p2-p3) - m - c1*p1 -c2*p2)
dp4 = p4 * (c4*(1-p1-p2-p3-p4) - m - c1*p1 - c2*p2 - c3*p3)
where I also made explicit that dpk
is a multiple of pk
. This is necessary as it ensures that the dynamic stays in the octand of positive variables.
Using python the plot looks like in the paper
def p_ode(p,c,m):
return [ p[i]*(c[i]*(1-sum(p[j] for j in range(i+1))) - m[i] - sum(c[j]*p[j] for j in range(i))) for i in range(len(p)) ]
c = [0.333,3.700,41.150,457.200]; m=4*[0.100]
u0 = [0.05,0.05,0.05,0.05]
t = np.linspace(0,60,601)
p = odeint(lambda u,t: p_ode(u,c,m), u0, t)
for k in range(4): plt.plot(t,p[:,k], label='$p_%d$'%(k+1));
plt.grid(); plt.legend(); plt.show()
Upvotes: 3