Reputation: 35
EDIT: I forgot to mention that I do not want to allocate another temporarily array.
I am trying to solve a problem in C, which is: Suppose you were given an array a and it's size N. You know that all of the elements in the array are between 0 to n-1. The function is supposed to return 0 if there is a missing number in the range (0 to n-1). Otherwise, it returns 1. As you can understand, duplicates are possible. The thing is that its supposed to run on O(n) runtime. I think I managed to do it but i'm not sure. From looking at older posts here, it seems almost impossible and the algorithm seems much more complicated then the algorithm I have. Therefore, something feels wrong to me. I could not find an input that returns the wrong output yet thou.
In any case, I'd appreciate your feedback- or if you can think of an input that this might not work for. Here's the code:
int missingVal(int* a, int size)
{
int i, zero = 0;
for (i = 0; i < size; i++)
//We multiply the element of corresponding index by -1
a[abs(a[i])] *= -1;
for (i = 0; i < size; i++)
{
//If the element inside the corresponding index is positive it means it never got multiplied by -1
//hence doesn't exist in the array
if (a[i] > 0)
return 0;
//to handle the cases for zeros, we will count them
if (a[i] == 0)
zero++;
}
if (zero != 1)
return 0;
return 1;
}
Upvotes: 0
Views: 765
Reputation: 12749
To overcome the requirement that excludes any extra memory consumption, the posted algorithm changes the values inside the array by simply negating their value, but that would leave index 0 unchanged.
I propose a different mapping: from [0, size) to (-1 - size, -1], so that e.g. {0, 1, 2, 3, 4, ...} becomes {-1, -2, -3, -4, -5, ...}. Note that, for a two's complement representation of integers, INT_MIN = -INT_MAX - 1.
// The following assumes that every value inside the array is in [0, size-1)
int missingVal(int* a, int size) // OT: I find the name misleading
{
int i = 0;
for (; i < size; i++)
{
int *pos = a[i] < 0
? a + (-a[i] - 1) // A value can already have been changed...
: a + a[i];
if ( *pos < 0 ) // but if the pointed one is negative, there's a duplicate
break;
*pos = -1 - *pos;
}
return i == size; // Returns 1 if there are no duplicates
}
If needed, the original values could be restored, before returning, with a simple loop
if ( i != size ) {
for (int j = 0; j < size; ++j) {
if ( a[j] < 0 )
a[j] = -a[j] - 1;
}
} else { // I already know that ALL the values are changed
for (int j = 0; j < size; ++j)
a[j] = -a[j] - 1;
}
Upvotes: 0
Reputation: 4116
This problem is the same as finding out if your array has duplicates. Here's why
0
and n-1
n
If there's a missing number in that range, that can only mean that another number took its place. Which means that the array must have a duplicate number
int missingVal(int arr[], int size)
{
// Increment all the numbers to avoid an array with only 0s
for (int i = 0; i < size; i++) arr[i]++;
for (int i = 0; i < size; i++)
{
if (arr[abs(arr[i])] >= 0)
arr[abs(arr[i])] = -arr[abs(arr[i])];
else
return 0;
}
return 1;
}
As Bruno mentioned if we have an array with all zeros, we could have run into a problem. This is why I included in this edit an incrementation of all the numbers.
While this add another "pass" into the algorithm, the solution is still in O(n) time & O(1) space
Another great suggestion from Bruno which optimizes this, is to look if there's more than one zero instead of incrementing the array.
If there's 2 or more, we can directly return 0
since we have found a duplicate (and by the same token that not all the numbers in the range are in the array)
Upvotes: 2
Reputation: 32586
your program works and it is in O(N), but it is quite complicated and worst it modify the initial array
can be just that :
int check(int* a, int size)
{
int * b = calloc(size, sizeof(int));
int i;
for (i = 0; i != size; ++i) {
b[a[i]] = 1;
}
for (i = 0; i != size; ++i) {
if (b[i] == 0) {
free(b);
return 0;
}
}
free(b);
return 1;
}
Upvotes: 2
Reputation: 2676
Just copy the values to another array placing each value in its ordinal position. Then walk the copy to see if anything is missing.
Upvotes: 2