Reputation: 351
I need to compare each row from one dataframe to each row of another one:
id first_name last_name account_nr amount currency comment
1 wW3A4QgpQQd Lynnett Labadini ES46 2569 1625 6669 5490 4624 9655.56 JPY Z617
2 LsoPIXEMOo5 Velvet Ritelli FR60 4478 1591 96PB SIMI FSTO L13 6992.36 PHP L841
3 L2wBds77Pw8 orv matfin LB61 6941 CQYE ONER G5T0 KNDU JU5H 6184.38 CAD o705
4 ME4O9MKlOzO ring hecks BG28 JYPB 4068 09NB FQ7I 6C 4203.54 IDR Y548
5 d83N7Viwq8k judd Riddick IL36 2200 2898 6944 4508 084 3619.43 IDR O762
6 1l96680epEy Edouard Kapovski IS73 1064 6186 1231 6178 3743 49 5291.76 BRL T397
7 7JwvD23oMzC Jake Rabinovich KZ80 759G VOHS JHBY L5TY 6994.26 NGN Y784
8 ZOcg2uprlN6 vere gravener SE39 1416 1830 7878 5026 6805 5281.18 UAH Z890
9 AUrx3nYR2Ks Bob Kelso VS41 5146 7748 1278 5362 4324.12 USD W312
10 VrDS+DqRG4S1 Mitch Mitchell AT65 6306 7334 7478 1908 4221.59 EUR T352
another one
id first_name last_name amount currency comment recipient
1 xGZx1tNE4oa Lynnett Labadini 9655.56 JPY Z617 72
2 nV7NtxiguPQ Velvet Ritelli 6992.36 PHP L841 175
3 Rto0EHOR17k Orv Matfin 6184.38 CAD O705 412
4 2VDMHTJnxcw Ring Hecks 4203.54 IDR Y548 63
5 VQI7I0EZf1q Judd Riddick 3619.43 IDR O163 39
6 w835JEfmJvZ Edouard Avramovic 5291.76 BRL T397 240
7 of2FZZXFKY8 Ferdy Petracchi 6994.26 NGN Y784 102
8 XgUZFhKowB1 Vere Gravener 5281.18 IDR U024 111
9 iGO9advyXP3 Temp McKeevers 7364.49 TND R404 327
10 5BCiYQVhfxM Arnie Ashdown 4221.59 ZAR N988 262
I want to do it with tidyverse, but anoter way is acceptable too. I don't want to use a loop. There is no matches in IDs. The task is to make kind of a fuzzy-join on first_name, last_name, amount, currency, comment
columns. One way that I see is spread each row of the first dataframe nrow
time of the another one and use map, but I think it's very memory inefficient.
Upvotes: 1
Views: 120
Reputation: 6220
See my solution using fuzzyjoin
. It basically does spread each row in left for every row in right because I set a high (10) max_dist but you could lower it if you don't want bad matches anyway. Then it uses group_by
and top_n
to pick out the best matches for each first_name and last_name in the first data frame.
I added your "mismatch" and "label" criteria (see the first 2 columns). You can tweak the matching function options (right now it compares string distance for the five columns you specified, using a specific stringdist method, Levenshtein).
Also, Bob Kelso shows up twice because the best match is tied between 2 (bad) matches so the algorithm has no way to pick one of equally bad matches.
library(tidyverse); library(fuzzyjoin)
# Load data
df1 <- tibble::tribble(
~id, ~first_name, ~last_name, ~account_nr, ~amount, ~currency, ~comment,
"wW3A4QgpQQd", "Lynnett", "Labadini", "ES46 2569 1625 6669 5490 4624", 9655.56, "JPY", "Z617",
"LsoPIXEMOo5", "Velvet", "Ritelli", "FR60 4478 1591 96PB SIMI FSTO L13", 6992.36, "PHP", "L841",
"L2wBds77Pw8", "orv", "matfin", "LB61 6941 CQYE ONER G5T0 KNDU JU5H", 6184.38, "CAD", "o705",
"ME4O9MKlOzO", "ring", "hecks", "BG28 JYPB 4068 09NB FQ7I 6C", 4203.54, "IDR", "Y548",
"d83N7Viwq8k", "judd", "Riddick", "IL36 2200 2898 6944 4508 084", 3619.43, "IDR", "O762",
"1l96680epEy", "Edouard", "Kapovski", "IS73 1064 6186 1231 6178 3743 49", 5291.76, "BRL", "T397",
"7JwvD23oMzC", "Jake", "Rabinovich", "KZ80 759G VOHS JHBY L5TY", 6994.26, "NGN", "Y784",
"ZOcg2uprlN6", "vere", "gravener", "SE39 1416 1830 7878 5026 6805", 5281.18, "UAH", "Z890",
"AUrx3nYR2Ks", "Bob", "Kelso", "VS41 5146 7748 1278 5362", 4324.12, "USD", "W312",
"VrDS+DqRG4S1", "Mitch", "Mitchell", "AT65 6306 7334 7478 1908", 4221.59, "EUR", "T352"
)
df2 <- tibble::tribble(
~id, ~first_name, ~last_name, ~amount, ~currency, ~comment, ~recipient,
"xGZx1tNE4oa", "Lynnett", "Labadini", 9655.56, "JPY", "Z617", 72,
"nV7NtxiguPQ", "Velvet", "Ritelli", 6992.36, "PHP", "L841", 175,
"Rto0EHOR17k", "Orv", "Matfin", 6184.38, "CAD", "O705", 412,
"2VDMHTJnxcw", "Ring", "Hecks", 4203.54, "IDR", "Y548", 63,
"VQI7I0EZf1q", "Judd", "Riddick", 3619.43, "IDR", "O163", 39,
"w835JEfmJvZ", "Edouard", "Avramovic", 5291.76, "BRL", "T397", 240,
"of2FZZXFKY8", "Ferdy", "Petracchi", 6994.26, "NGN", "Y784", 102,
"XgUZFhKowB1", "Vere", "Gravener", 5281.18, "IDR", "U024", 111,
"iGO9advyXP3", "Temp", "McKeevers", 7364.49, "TND", "R404", 327,
"5BCiYQVhfxM", "Arnie", "Ashdown", 4221.59, "ZAR", "N988", 262
)
# Solution using fuzzyjoin
stringdist_left_join(df1, df2, by = c("first_name", "last_name", "amount", "currency", "comment"),
max_dist = 10, ignore_case = TRUE, method = "lv", distance_col = "dist") %>%
mutate(total.dist = first_name.dist + last_name.dist + amount.dist + currency.dist + comment.dist) %>%
group_by(first_name.x, last_name.x) %>%
top_n(-1, total.dist) %>%
mutate(mismatch = (first_name.dist>0) + (last_name.dist>0) + (amount.dist>0) + (currency.dist>0) + (comment.dist>0),
label = case_when(mismatch == 0 ~ "match",
mismatch == 1 ~ "high",
mismatch == 2 ~ "proposed",
mismatch > 2 ~ "none",
TRUE ~ "")) %>%
select(label, mismatch, total.dist, everything())
#> # A tibble: 11 x 22
#> # Groups: first_name.x, last_name.x [10]
#> label mismatch total.dist id.x first_name.x last_name.x account_nr
#> <chr> <int> <dbl> <chr> <chr> <chr> <chr>
#> 1 match 0 0 wW3A~ Lynnett Labadini ES46 2569~
#> 2 match 0 0 LsoP~ Velvet Ritelli FR60 4478~
#> 3 match 0 0 L2wB~ orv matfin LB61 6941~
#> 4 match 0 0 ME4O~ ring hecks BG28 JYPB~
#> 5 high 1 2 d83N~ judd Riddick IL36 2200~
#> 6 high 1 7 1l96~ Edouard Kapovski IS73 1064~
#> 7 prop~ 2 14 7Jwv~ Jake Rabinovich KZ80 759G~
#> 8 prop~ 2 7 ZOcg~ vere gravener SE39 1416~
#> 9 none 5 20 AUrx~ Bob Kelso VS41 5146~
#> 10 none 5 20 AUrx~ Bob Kelso VS41 5146~
#> 11 none 4 19 VrDS~ Mitch Mitchell AT65 6306~
#> # ... with 15 more variables: amount.x <dbl>, currency.x <chr>,
#> # comment.x <chr>, id.y <chr>, first_name.y <chr>, last_name.y <chr>,
#> # amount.y <dbl>, currency.y <chr>, comment.y <chr>, recipient <dbl>,
#> # amount.dist <dbl>, comment.dist <dbl>, currency.dist <dbl>,
#> # first_name.dist <dbl>, last_name.dist <dbl>
Created on 2019-03-17 by the reprex package (v0.2.1)
Upvotes: 1