Reputation: 35
I'm currently working with a dataframe in the form:
import pandas as pd
import numpy as np
df = pd.DataFrame([['A', 12.1, 11.4, 15.1, 9.9], ['B', 8.3, 10.3, 16.6, 7.8], ['B', 7.8, 11.1, 16.3, 8.4],
['B', 8.6, 10.9, 16.4, 8.1], ['A', 12.25, 11.6, 16.25, 8.9], ['B', 8.13, 11.6, 16.7, 7.4]
], columns = ['Symbol', 'C1','C2', 'C3', 'C4'])
And a list of lists that includes the comparisons across columns I'd like to make:
lst = [['C1','C2'], ['C1','C3'], ['C3','C4']]
I'm trying to calculate the difference of the means (repeated symbols) for each comparison as well as do a ttest_ind then return a new dataframe with the results that would look like:
df2 = pd.DataFrame([['A', 0.675, 'pval here', -3.5, 'pval here',6.275,'pval here'],
['B', -2.7675, 'pval here', -8.2925, 'pval here', 8.575 , 'pval here']],
columns = ['Symbol', 'C1-C2','C1-C2 pval', 'C1-C3', 'C1-C3 pval', 'C3-C4','C3-C4 pval'])
Finding the difference between the means is somewhat straightforward using groupby to get the means then loop over the pairs of the list as:
df = df.groupby('Symbol').agg(np.mean)
for pair in lst:
df[pair[0]+'-'+pair[1]] = df[pair[0]] - df[pair[1]]
But I've been stuck in applying ttest_ind and then returning the p-vaule into another column.
Any assistance is greatly appreciated.
Upvotes: 2
Views: 905
Reputation: 35
Eureka!
Starting from what I posted in the question:
import pandas as pd
import numpy as np
from scipy.stats import ttest_ind
df = pd.DataFrame([['A', 12.1, 11.4, 15.1, 9.9], ['B', 8.3, 10.3, 16.6, 7.8], ['B', 7.8, 11.1, 16.3, 8.4],
['B', 8.6, 10.9, 16.4, 8.1], ['A', 12.25, 11.6, 16.25, 8.9], ['B', 8.13, 11.6, 16.7, 7.4]
], columns = ['Symbol', 'C1','C2', 'C3', 'C4'])
lst = [['C1','C2'], ['C1','C3'], ['C3','C4']]
I first find the difference between the pairs in the list:
df2 = df.groupby('Symbol').agg(np.mean)
for pair in lst:
df2[pair[0]+'-'+pair[1]] = df2[pair[0]] - df2[pair[1]]
Then I make list of the 'Symbols' and loop through it to make a new dataframes containing only the same symbol for the t-test which I then append to the dataframe that has the differences:
lst2 = list(set(df.Symbol))
for item in lst2:
df3 = df[df.Symbol == item]
for pair in lst:
df2.loc[item, pair[0]+'-'+pair[1]+' pval'] = ttest_ind(df3[pair[0]], df3[pair[1]])[1]
This results in the dataframe (df2):
C1 C2 C3 C4 C1-C2 C1-C3 C3-C4 C1-C2 pval C1-C3 pval C3-C4 pval
Symbol
A 12.1750 11.500 15.675 9.400 0.6750 -3.5000 6.275 0.032625 2.636815e-02 1.442745e-02
B 8.2075 10.975 16.500 7.925 -2.7675 -8.2925 8.575 0.000124 9.784611e-09 2.636731e-08
To which then I can drop the columns with the averages (C1, C2...) to get my desired output.
Upvotes: 0
Reputation: 42946
You can use the method scipy.stats.ttest_ind
for this.
The method returns a tuple with (t-statistic, p-value)
. So we can access the p-value
with index 1 like following:
# Dataframe I start with, given by OP
df = df.groupby('Symbol').agg(np.mean)
for pair in lst:
df[pair[0]+'-'+pair[1]] = df[pair[0]] - df[pair[1]]
print(df)
C1 C2 C3 C4 C1-C2 C1-C3 C3-C4
Symbol
A 12.1750 11.500 15.675 9.400 0.6750 -3.5000 6.275
B 8.2075 10.975 16.500 7.925 -2.7675 -8.2925 8.575
from scipy.stats import ttest_ind
lst = [['C1','C2'], ['C1','C3'], ['C3','C4']]
df_group = df.groupby('Symbol').sum()
for l in lst:
df_group[l[0]+'-'+l[1]+' pval'] = ttest_ind(df_group[l[0]], df_group[l[1]])[1]
# Drop columns not needed anymore
df = df_group.drop(['C1', 'C2', 'C3', 'C4'],axis=1)
# Sort columns to get expected output
df = df.reindex(sorted(df.columns), axis=1).reset_index()
print(df)
Symbol C1-C2 C1-C2 pval C1-C3 C1-C3 pval C3-C4 C3-C4 pval
0 A 0.6750 0.653228 -3.5000 0.100586 6.275 0.012706
1 B -2.7675 0.653228 -8.2925 0.100586 8.575 0.012706
Upvotes: 1