Reputation: 30010
I tried to measure branch prediction cost, I created a little program.
It creates a little buffer on stack, fills with random 0/1. I can set the size of the buffer with N
. The code repeatedly causes branches for the same 1<<N
random numbers.
Now, I've expected, that if 1<<N
is sufficiently large (like >100), then the branch predictor will not be effective (as it has to predict >100 random numbers). However, these are the results (on a 5820k machine), as N
grows, the program becomes slower:
N time
=========
8 2.2
9 2.2
10 2.2
11 2.2
12 2.3
13 4.6
14 9.5
15 11.6
16 12.7
20 12.9
For reference, if buffer is initialized with zeros (use the commented init
), time is more-or-less constant, it varies between 1.5-1.7 for N
8..16.
My question is: can branch predictor effective for predicting such a large amount of random numbers? If not, then what's going on here?
(Some more explanation: the code executes 2^32 branches, no matter of N
. So I expected, that the code runs the same speed, no matter of N
, because the branch cannot be predicted at all. But it seems that if buffer size is less than 4096 (N
<=12), something makes the code fast. Can branch prediction be effective for 4096 random numbers?)
Here's the code:
#include <cstdint>
#include <iostream>
volatile uint64_t init[2] = { 314159165, 27182818 };
// volatile uint64_t init[2] = { 0, 0 };
volatile uint64_t one = 1;
uint64_t next(uint64_t s[2]) {
uint64_t s1 = s[0];
uint64_t s0 = s[1];
uint64_t result = s0 + s1;
s[0] = s0;
s1 ^= s1 << 23;
s[1] = s1 ^ s0 ^ (s1 >> 18) ^ (s0 >> 5);
return result;
}
int main() {
uint64_t s[2];
s[0] = init[0];
s[1] = init[1];
uint64_t sum = 0;
#if 1
const int N = 16;
unsigned char buffer[1<<N];
for (int i=0; i<1<<N; i++) buffer[i] = next(s)&1;
for (uint64_t i=0; i<uint64_t(1)<<(32-N); i++) {
for (int j=0; j<1<<N; j++) {
if (buffer[j]) {
sum += one;
}
}
}
#else
for (uint64_t i=0; i<uint64_t(1)<<32; i++) {
if (next(s)&1) {
sum += one;
}
}
#endif
std::cout<<sum<<"\n";
}
(The code contains a non-buffered version as well, use #if 0
. It runs around the same speed as the buffered version with N=16
)
Here's the inner loop disassembly (compiled with clang. It generates the same code for all N
between 8..16, only the loop count differs. Clang unrolled the loop twice):
401270: 80 3c 0c 00 cmp BYTE PTR [rsp+rcx*1],0x0
401274: 74 07 je 40127d <main+0xad>
401276: 48 03 35 e3 2d 00 00 add rsi,QWORD PTR [rip+0x2de3] # 404060 <one>
40127d: 80 7c 0c 01 00 cmp BYTE PTR [rsp+rcx*1+0x1],0x0
401282: 74 07 je 40128b <main+0xbb>
401284: 48 03 35 d5 2d 00 00 add rsi,QWORD PTR [rip+0x2dd5] # 404060 <one>
40128b: 48 83 c1 02 add rcx,0x2
40128f: 48 81 f9 00 00 01 00 cmp rcx,0x10000
401296: 75 d8 jne 401270 <main+0xa0>
Upvotes: 4
Views: 1916
Reputation: 30010
Branch prediction can be such effective. As Peter Cordes suggests, I've checked branch-misses with perf stat
. Here are the results:
N time cycles branch-misses (%) approx-time
===============================================================
8 2.2 9,084,889,375 34,806 ( 0.00) 2.2
9 2.2 9,212,112,830 39,725 ( 0.00) 2.2
10 2.2 9,264,903,090 2,394,253 ( 0.06) 2.2
11 2.2 9,415,103,000 8,102,360 ( 0.19) 2.2
12 2.3 9,876,827,586 27,169,271 ( 0.63) 2.3
13 4.6 19,572,398,825 486,814,972 (11.33) 4.6
14 9.5 39,813,380,461 1,473,662,853 (34.31) 9.5
15 11.6 49,079,798,916 1,915,930,302 (44.61) 11.7
16 12.7 53,216,900,532 2,113,177,105 (49.20) 12.7
20 12.9 54,317,444,104 2,149,928,923 (50.06) 12.9
Note: branch-misses (%) is calculated for 2^32 branches
As you can see, when N<=12
, branch predictor can predict most of the branches (which is surprising: the branch predictor can memorize the outcome of 4096 consecutive random branches!). When N>12
, branch-misses starts to grow. At N>=16
, it can only predict ~50% correctly, which means it is as effective as random coin flips.
The time taken can be approximated by looking at the time and branch-misses (%) column: I've added the last column, approx-time
. I've calculated it by this: 2.2+(12.9-2.2)*branch-misses %/100
. As you can see, approx-time
equals to time
(not considering rounding error). So this effect can be explained perfectly by branch prediction.
The original intent was to calculate how many cycles a branch-miss costs (in this particular case - as for other cases this number can differ):
(54,317,444,104-9,084,889,375)/(2,149,928,923-34,806) = 21.039 = ~21 cycles.
Upvotes: 2