Reputation: 1412
I have a bool array (bool_arr
) that I want to replace the consecutive non-zero numbers along the columns with their count (consecutive_count
) (which is also the max/last number of the consecutive group)
bool_arr = consecutive_count =
[[1 1 1 1 0 1] [[3 6 1 6 0 1]
[1 1 0 1 1 0] [3 6 0 6 5 0]
[1 1 1 1 1 1] [3 6 3 6 5 2]
[0 1 1 1 1 1] [0 6 3 6 5 2]
[1 1 1 1 1 0] [2 6 3 6 5 0]
[1 1 0 1 1 1]] [2 6 0 6 5 1]]
I've created my own function that gets the cumulative sum of consecutive non-zero elements along the columns
consecutive_cumsum =
[[1 1 1 1 0 1]
[2 2 0 2 1 0]
[3 3 1 3 2 1]
[0 4 2 4 3 2]
[1 5 3 5 4 0]
[2 6 0 6 5 1]]
I currently use the following to get consecutive_count
:
bool_arr = np.array([[1,1,1,1,0,1],
[1,1,0,1,1,0],
[1,1,1,1,1,1],
[0,1,1,1,1,1],
[1,1,1,1,1,0],
[1,1,0,1,1,1]])
consecutive_cumsum = np.array([[1,1,1,1,0,1],
[2,2,0,2,1,0],
[3,3,1,3,2,1],
[0,4,2,4,3,2],
[1,5,3,5,4,0],
[2,6,0,6,5,1]])
consecutive_count = consecutive_cumsum.copy()
for x in range(consecutive_count.shape[1]):
maximum = 0
for y in range(consecutive_count.shape[0]-1, -1, -1):
if consecutive_cumsum[y,x] > 0:
if consecutive_cumsum[y,x] < maximum: consecutive_count[y,x] = maximum
else: maximum = consecutive_cumsum[y,x]
else: maximum = 0
print(consecutive_count)
It works great but I am iterating over every element to replace with the max, between zeros.
Is there a way to use numpy to vectorize this instead of looping over all elements. And as a bonus, specify which axis (row vs column) it will perform it on
Upvotes: 4
Views: 393
Reputation: 53069
The new (v1.15.0 I believe) append
and prepend
keywords of np.diff
make this easy:
bnd = np.diff(bool_arr, axis=0, prepend=0, append=0)
x, y = np.where(bnd.T)
bnd.T[x, y] *= (y[1::2]-y[::2]).repeat(2)
bnd[:-1].cumsum(axis=0)
# array([[3, 6, 1, 6, 0, 1],
# [3, 6, 0, 6, 5, 0],
# [3, 6, 3, 6, 5, 2],
# [0, 6, 3, 6, 5, 2],
# [2, 6, 3, 6, 5, 0],
# [2, 6, 0, 6, 5, 1]])
With selectable axis:
def count_ones(a, axis=-1):
a = a.swapaxes(-1, axis)
bnd = np.diff(a, axis=-1, prepend=0, append=0)
*idx, last = np.where(bnd)
bnd[(*idx, last)] *= (last[1::2]-last[::2]).repeat(2)
return bnd[..., :-1].cumsum(axis=-1).swapaxes(-1, axis)
UPDATE: and a version that works with general (not just 0/1) entries:
def sum_stretches(a, axis=-1):
a = a.swapaxes(-1, axis)
dtype = np.result_type(a, 'i1')
bnd = np.diff((a!=0).astype(dtype), axis=-1, prepend=0, append=0)
*idx, last = np.where(bnd)
A = np.concatenate([np.zeros((*a.shape[:-1], 1), a.dtype), a.cumsum(axis=-1)], -1)[(*idx, last)]
bnd[(*idx, last)] *= (A[1::2]-A[::2]).repeat(2)
return bnd[..., :-1].cumsum(axis=-1).swapaxes(-1, axis)
Upvotes: 4
Reputation: 1412
building on paulpanzer's answer for poor souls (like me) who dont have numpy v1.15+
def sum_stretches(a, axis=-1):
a = a.swapaxes(-1, axis)
padding = [[0,0].copy()]*a.ndim
padding[-1] = [1,1]
padded = np.pad((a!=0), padding, 'constant', constant_values=0).astype('int32')
bnd = np.diff(padded, axis=-1)
*idx, last = np.where(bnd)
A = np.concatenate([np.zeros((*a.shape[:-1], 1), 'int32'), a.cumsum(axis=-1)], -1)[(*idx, last)]
bnd[(*idx, last)] *= (A[1::2]-A[::2]).repeat(2)
return bnd[..., :-1].cumsum(axis=-1).swapaxes(-1, axis)
Upvotes: 1
Reputation: 29742
Using itertools.groupby
:
import itertools
for i in range(b.shape[1]):
counts = []
for k,v in itertools.groupby(b[:,i]):
g = list(v)
counts.extend([sum(g)] * len(g))
b[:,i] = counts
Output:
array([[3, 6, 1, 6, 0, 1],
[3, 6, 0, 6, 5, 0],
[3, 6, 3, 6, 5, 2],
[0, 6, 3, 6, 5, 2],
[2, 6, 3, 6, 5, 0],
[2, 6, 0, 6, 5, 1]])
Upvotes: 1