Reputation: 337
I need help with comparing two dataframes. For example:
The first dataframe is
df_1 =
0 1 2 3 4 5
0 1 1 1 1 1 1
1 2 2 2 2 2 2
2 3 3 3 3 3 3
3 4 4 4 4 4 4
4 2 2 2 2 2 2
5 5 5 5 5 5 5
6 1 1 1 1 1 1
7 6 6 6 6 6 6
The second dataframe is
df_2 =
0 1 2 3 4 5
0 1 1 1 1 1 1
1 2 2 2 2 2 2
2 3 3 3 3 3 3
3 4 4 4 4 4 4
4 5 5 5 5 5 5
5 6 6 6 6 6 6
May I know if there is a way (without using for loop) to find the index of the rows of df_1 that have the same row values of df_2. In the example above, my expected output is below
index =
0
1
2
3
5
7
The size of the column of the "index" variable above should have the same column size of df_2.
If the same row of df_2 repeated in df_1 more than once, I only need the index of the first appearance, thats why I don't need the index 4 and 6.
Please help. Thank you so much!
Tommy
Upvotes: 1
Views: 34
Reputation: 862406
Use DataFrame.merge
with DataFrame.drop_duplicates
and DataFrame.reset_index
for convert index to column for avoid lost index values, last select column called index
:
s = df_2.merge(df_1.drop_duplicates().reset_index())['index']
print (s)
0 0
1 1
2 2
3 3
4 5
5 7
Name: index, dtype: int64
Detail:
print (df_2.merge(df_1.drop_duplicates().reset_index()))
0 1 2 3 4 5 index
0 1 1 1 1 1 1 0
1 2 2 2 2 2 2 1
2 3 3 3 3 3 3 2
3 4 4 4 4 4 4 3
4 5 5 5 5 5 5 5
5 6 6 6 6 6 6 7
Upvotes: 1
Reputation: 521
Check the solution
df1=pd.DataFrame({'0':[1,2,3,4,2,5,1,6],
'1':[1,2,3,4,2,5,1,6],
'2':[1,2,3,4,2,5,1,6],
'3':[1,2,3,4,2,5,1,6],
'4':[1,2,3,4,2,5,1,6],
'5':[1,2,3,4,2,5,1,6]})
df1=pd.DataFrame({'0':[1,2,3,4,5,6],
'1':[1,2,3,4,5,66],
'2':[1,2,3,4,5,6],
'3':[1,2,3,4,5,66],
'4':[1,2,3,4,5,6],
'5':[1,2,3,4,5,6]})
df1[df1.isin(df2)].index.values.tolist()
### Output
[0, 1, 2, 3, 4, 5, 6, 7]
Upvotes: 0