Reputation: 169
I want to pass a tensor through a convolutional 2 layer. I am not able to execute it as I am getting a type error even though I have converted my numpy array to a tensor.
I tried using tf.convert_to_tensor() to solve this problem. Didn't work
import numpy as np
import tensorflow as tf
class Generator():
def __init__(self):
self.conv1 = nn.Conv2d(1, 28, kernel_size=3, stride=1, padding=1)
self.pool1 = nn.MaxPool2d(kernel_size=3, stride=0, padding=1)
self.fc1 = nn.Linear(100, 10)
self.fc2 = nn.Linear(10, 5)
def forward_pass(self, x): #Why do we pass the object itself in every method?
x = self.conv1(x)
print(x)
x = self.pool1(x)
print(x)
x = self.fc1(x)
print(x)
x = self.fc2(x)
print(x)
return x
arr = tf.convert_to_tensor(np.random.random((3,28,28)))
gen = Generator()
gen.forward_pass(arr)
Error message -
TypeError Traceback (most recent call last)
<ipython-input-31-9fa8e764dcdb> in <module>()
1 gen = Generator()
----> 2 gen.forward_pass(arr)
2 frames
/usr/local/lib/python3.6/dist-packages/torch/nn/modules/conv.py in forward(self, input)
336 _pair(0), self.dilation, self.groups)
337 return F.conv2d(input, self.weight, self.bias, self.stride,
--> 338 self.padding, self.dilation, self.groups)
339
340
TypeError: conv2d(): argument 'input' (position 1) must be Tensor, not Tensor
Upvotes: 1
Views: 4004
Reputation: 10666
You are trying to pass a TensorFlow tensor to a PyTorch function. TensorFlow and PyTorch are separate projects with different data structures which, in general, cannot be used interchangeably in this way.
To convert a NumPy array to a PyTorch tensor, you can use:
import torch
arr = torch.from_numpy(np.random.random((3,28,28)))
Upvotes: 2