Reputation: 1609
I'm trying to find the best way to compute the minimum element wise products between two sets of vectors. The usual matrix multiplication C=A@B
computes Cij
as the sum of the pairwise products of the elements of the vectors Ai
and B^Tj
. I would like to perform instead the minimum of the pairwise products. I can't find an efficient way to do this between two matrices with numpy.
One way to achieve this would be to generate the 3D matrix of the pairwise products between A
and B
(before the sum) and then take the minimum over the third dimension. But this would lead to a huge memory footprint (and I actually dn't know how to do this).
Do you have any idea how I could achieve this operation ?
Example:
A = [[1,1],[1,1]]
B = [[0,2],[2,1]]
matrix matmul:
C = [[1*0+1*2,1*2+1*1][1*0+1*2,1*2+1*1]] = [[2,3],[2,3]]
minimum matmul:
C = [[min(1*0,1*2),min(1*2,1*1)][min(1*0,1*2),min(1*2,1*1)]] = [[0,1],[0,1]]
Upvotes: 1
Views: 260
Reputation: 6492
Numba can be also an option
I was a bit surprised of the not particularly good Numexpr Timings, so I tried a Numba Version. For large Arrays this can be optimized further. (Quite the same principles like for a dgemm can be applied)
import numpy as np
import numba as nb
import numexpr as ne
@nb.njit(fastmath=True,parallel=True)
def min_pairwise_prod(A,B):
assert A.shape[1]==B.shape[1]
res=np.empty((A.shape[0],B.shape[0]))
for i in nb.prange(A.shape[0]):
for j in range(B.shape[0]):
min_prod=A[i,0]*B[j,0]
for k in range(B.shape[1]):
prod=A[i,k]*B[j,k]
if prod<min_prod:
min_prod=prod
res[i,j]=min_prod
return res
Timings
A=np.random.rand(300,300)
B=np.random.rand(300,300)
%timeit res_1=min_pairwise_prod(A,B) #parallel=True
5.56 ms ± 1.6 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%timeit res_1=min_pairwise_prod(A,B) #parallel=False
26 ms ± 163 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
%timeit res_2 = ne.evaluate('min(A3D*B,2)',{'A3D':A[:,None]})
87.7 ms ± 265 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
%timeit res_3=np.min(A[:,None]*B,axis=2)
110 ms ± 214 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
A=np.random.rand(1000,300)
B=np.random.rand(1000,300)
%timeit res_1=min_pairwise_prod(A,B) #parallel=True
50.6 ms ± 401 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)
%timeit res_1=min_pairwise_prod(A,B) #parallel=False
296 ms ± 5.02 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%timeit res_2 = ne.evaluate('min(A3D*B,2)',{'A3D':A[:,None]})
992 ms ± 7.59 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%timeit res_3=np.min(A[:,None]*B,axis=2)
1.27 s ± 15.4 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
Upvotes: 1
Reputation: 221754
Use broadcasting
after extending A
to 3D
-
A = np.asarray(A)
B = np.asarray(B)
C_out = np.min(A[:,None]*B,axis=2)
If you care about memory footprint, use numexpr
module to be efficient about it -
import numexpr as ne
C_out = ne.evaluate('min(A3D*B,2)',{'A3D':A[:,None]})
Timings on large arrays -
In [12]: A = np.random.rand(200,200)
In [13]: B = np.random.rand(200,200)
In [14]: %timeit np.min(A[:,None]*B,axis=2)
34.4 ms ± 614 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
In [15]: %timeit ne.evaluate('min(A3D*B,2)',{'A3D':A[:,None]})
29.3 ms ± 316 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
In [16]: A = np.random.rand(300,300)
In [17]: B = np.random.rand(300,300)
In [18]: %timeit np.min(A[:,None]*B,axis=2)
113 ms ± 2.27 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
In [19]: %timeit ne.evaluate('min(A3D*B,2)',{'A3D':A[:,None]})
102 ms ± 691 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
So, there's some improvement with numexpr
, but maybe not as much I was expecting it to be.
Upvotes: 1