Muke888
Muke888

Reputation: 163

Merge pandas dataframe based on date range & value match

I am looking to automate the reconciliation of bank transactions. There are 2 tables, the bank table & the system table, whereby the transactions in the system table are delayed by few days. The tables vary in length and do not have 1:1 match for transactions.

The problem is to find a consistent method to identify and group reconciling and non-reconciling transactions both ways. The first challenge I have encountered is to join/merge tables based on date range & the amount. Pandas.merge_asof would be suitable to join based on date range, but it is limited to 1 column-based join.

See example tables below:

bankdf = pd.DataFrame({'BankDate': pd.date_range('2018-12-28', periods=10, freq='3D'), 'Amount': np.array([140,107,132,188,75,152,88,159,132,107])})
systemdf = pd.DataFrame({'SystemCreditDate': pd.date_range('2019-01-04', periods=9, freq='3D'), 'Amount': np.array([107,132,190,75,152,88,110,132,132])})

bankdf
Out[119]: 
   Amount   BankDate
0     140 2018-12-28
1     107 2018-12-31
2     132 2019-01-03
3     188 2019-01-06
4      75 2019-01-09
5     152 2019-01-12
6      88 2019-01-15
7     159 2019-01-18
8     132 2019-01-21
9     107 2019-01-24

systemdf
Out[120]: 
   Amount SystemCreditDate
0     107       2019-01-04
1     132       2019-01-07
2     190       2019-01-10
3      75       2019-01-13
4     152       2019-01-16
5      88       2019-01-19
6     110       2019-01-22
7     132       2019-01-25
8     132       2019-01-28

The 2 tables will need to be joined based on where 'Amount' matches AND date difference is less than 6 days (SystemCreditDate - BankDate) < 6).

The final result should look something like this:

   Amount   BankDate SystemCreditDate
1     107 2018-12-31 2019-01-04
2     132 2019-01-03 2019-01-07
3      75 2019-01-09 2019-01-13
4     152 2019-01-12 2019-01-16
5      88 2019-01-15 2019-01-19
6     132 2019-01-21 2019-01-25

Upvotes: 1

Views: 283

Answers (1)

Space Impact
Space Impact

Reputation: 13255

Use DataFrame.merge and remove the rows which don't follow the rule:

df = bankdf.merge(systemdf)
mask = (df['SystemCreditDate']-df['BankDate']).abs().dt.days<6
df = df.loc[mask, :]

print(df)

     BankDate  Amount SystemCreditDate
0  2018-12-31     107       2019-01-04
2  2019-01-03     132       2019-01-07
6  2019-01-21     132       2019-01-25
8  2019-01-09      75       2019-01-13
9  2019-01-12     152       2019-01-16
10 2019-01-15      88       2019-01-19

OR to remove negative days:

df = bankdf.merge(systemdf)
mask = (df['SystemCreditDate']-df['BankDate']).dt.days
mask = mask.le(6) & ~mask.lt(0)
df = df.loc[mask, :]

Upvotes: 2

Related Questions