Reputation: 195
I want to deploy sklearn model in sagemaker. I created a training script.
scripPath=' sklearn.py'
sklearn=SKLearn(entry_point=scripPath,
train_instance_type='ml.m5.xlarge',
role=role, output_path='s3://{}/{}/output'.format(bucket,prefix), sagemaker_session=session)
sklearn.fit({"train-dir' : train_input})
When I deploy it
predictor=sklearn.deploy(initial_count=1,instance_type='ml.m5.xlarge')
It throws,
Clienterror: An error occured when calling the CreateModel operation:Could not find model data at s3://tree/sklearn/output/model.tar.gz
Can anyone say how to solve this issue?
Upvotes: 0
Views: 2461
Reputation: 4037
When deploying models, SageMaker looks up S3 to find your trained model artifact. It seems that there is no trained model artifact at s3://tree/sklearn/output/model.tar.gz
. Make sure to persist your model artifact in your training script at the appropriate local location in docker which is /opt/ml/model
.
for example, in your training script this could look like:
joblib.dump(model, /opt/ml/model/mymodel.joblib)
After training, SageMaker will copy the content of /opt/ml/model
to s3 at the output_path
location.
If you deploy in the same session a model.deploy()
will map automatically to the artifact path. If you want to deploy a model that you trained elsewhere, possibly during a different session or in a different hardware, you need to explicitly instantiate a model before deploying
from sagemaker.sklearn.model import SKLearnModel
model = SKLearnModel(
model_data='s3://...model.tar.gz', # your artifact
role=get_execution_role(),
entry_point='script.py') # script containing inference functions
model.deploy(
instance_type='ml.m5.xlarge',
initial_instance_count=1,
endpoint_name='your_endpoint_name')
See more about Sklearn in SageMaker here https://sagemaker.readthedocs.io/en/stable/using_sklearn.html
Upvotes: 1