Reputation: 1151
I am trying to deploy a model using my own custom inference container on sagemaker. I am following the documentation here https://docs.aws.amazon.com/sagemaker/latest/dg/adapt-inference-container.html
I have an entrypoint file:
from sagemaker_inference import model_server
#HANDLER_SERVICE = "/home/model-server/model_handler.py:handle"
HANDLER_SERVICE = "model_handler.py"
model_server.start_model_server(handler_service=HANDLER_SERVICE)
I have a model_handler.py file:
from sagemaker_inference.default_handler_service import DefaultHandlerService
from sagemaker_inference.transformer import Transformer
from CustomHandler import CustomHandler
class ModelHandler(DefaultHandlerService):
def __init__(self):
transformer = Transformer(default_inference_handler=CustomHandler())
super(HandlerService, self).__init__(transformer=transformer)
And I have my CustomHandler.py file:
import os
import json
import pandas as pd
from joblib import dump, load
from sagemaker_inference import default_inference_handler, decoder, encoder, errors, utils, content_types
class CustomHandler(default_inference_handler.DefaultInferenceHandler):
def model_fn(self, model_dir: str) -> str:
clf = load(os.path.join(model_dir, "model.joblib"))
return clf
def input_fn(self, request_body: str, content_type: str) -> pd.DataFrame:
if content_type == "application/json":
items = json.loads(request_body)
for item in items:
processed_item1 = process_item1(items["item1"])
processed_item2 = process_item2(items["item2])
all_item1 += [processed_item1]
all_item2 += [processed_item2]
return pd.DataFrame({"item1": all_item1, "comments": all_item2})
def predict_fn(self, input_data, model):
return model.predict(input_data)
Once I deploy the model to an endpoint with these files in the image, I get the following error: ml.mms.wlm.WorkerLifeCycle - ModuleNotFoundError: No module named 'model_handler'
.
I am really stuck what to do here. I wish there was an example of how to do this in the above way end to end but I don't think there is. Thanks!
Upvotes: 2
Views: 2846
Reputation: 585
This is because of the path mismatch. The entrypoint is trying to look for "model_handler.py" in WORKDIR
directory of the container.
To avoid this, always specify absolute path when working with containers.
Moreover your code looks confusing. Please use this sample code as the reference:
import subprocess
from subprocess import CalledProcessError
import model_handler
from retrying import retry
from sagemaker_inference import model_server
import os
def _retry_if_error(exception):
return isinstance(exception, CalledProcessError or OSError)
@retry(stop_max_delay=1000 * 50, retry_on_exception=_retry_if_error)
def _start_mms():
# by default the number of workers per model is 1, but we can configure it through the
# environment variable below if desired.
# os.environ['SAGEMAKER_MODEL_SERVER_WORKERS'] = '2'
print("Starting MMS -> running ", model_handler.__file__)
model_server.start_model_server(handler_service=model_handler.__file__ + ":handle")
def main():
_start_mms()
# prevent docker exit
subprocess.call(["tail", "-f", "/dev/null"])
main()
Further, notice this line - model_server.start_model_server(handler_service=model_handler.__file__ + ":handle")
Here we are starting the server, and telling it to call handle()
function in model_handler.py to invoke your custom logic for all incoming requests.
Also remember that Sagemaker BYOC requires model_handler.py to implement another function ping()
So your "model_handler.py" should look like this -
custom_handler = CustomHandler()
# define your own health check for the model over here
def ping():
return "healthy"
def handle(request, context): # context is necessary input otherwise Sagemaker will throw exception
if request is None:
return "SOME DEFAULT OUTPUT"
try:
response = custom_handler.predict_fn(request)
return [response] # Response must be a list otherwise Sagemaker will throw exception
except Exception as e:
logger.error('Prediction failed for request: {}. \n'
.format(request) + 'Error trace :: {} \n'.format(str(e)))
Upvotes: 2