Reputation: 25
Add a new column called Download_Type to a Dataframe with conditions:
If Size < 100,000, Download_Type = “Small”
If Size > 100,000 and Size < 1,000,000, Download_Type = “Medium”
Else Download_Type = “Large”
Input Data: log_file.txt
Sample Data "date","time","size","r_version","r_arch","r_os","package","version","country","ip_id" "2012-10-01","00:30:13",35165,"2.15.1","i686","linux-gnu","quadprog","1.5-4","AU",1
I have created a dataframe using these steps:
val file1 = sc.textFile(“log_file.txt”)
val header = file1.first
val logdata = file1.filter(x=>x!=header)
case class Log(date:String, time:String, size: Double, r_version:String, r_arch:String, r_os:String, packagee:String, version:String, country:String, ipr:Int)
val logfiledata = logdata.map(_.split(“,”)),map(p=>Log(p(0),p(1),p(2).toDouble,p(3),p(4),p(5),p(6),p(7),p(8),p(9).toInt))
val logfiledf = logfiledata.toDF()
I isolated the size column and converted it into an array:
val size = logfiledf.select($"size")
val sizearr = size.collect.map(row=>row.getDouble(0))
I made a function so i can populate the newly added column:
def exp1(size:Array[Double])={
var result = ""
for(i <- 0 to (size.length-1)){
if(size(i)<100000) result += "small"
else(if(size(i) >=100000 && size(i) <1000000) "medium"
else "large"
}
return result
}
I tried this to populate the column Download_Type:
val logfiledf2 = logfiledf.withColumn("Download_Type", expr(exp1(sizearr))
How can I populate the new column called Download_type with the conditions:
If Size < 100,000, Download_Type = “Small”
If Size > 100,000 and Size < 1,000,000, Download_Type = “Medium”
Else Download_Type = “Large” ?
Upvotes: 1
Views: 108
Reputation: 22439
You can simply apply withColumn
to the loaded DataFrame logfiledf
using when/otherwise
, as shown below:
import org.apache.spark.sql.functions._
import spark.implicits._
val logfiledf = Seq(
("2012-10-01","00:30:13",35165.0,"2.15.1","i686","linux-gnu","quadprog","1.5-4","AU",1),
("2012-10-02","00:40:14",150000.0,"2.15.1","i686","linux-gnu","quadprog","1.5-4","US",2)
).toDF("date","time","size","r_version","r_arch","r_os","package","version","country","ip_id")
logfiledf.withColumn("download_type", when($"size" < 100000, "Small").otherwise(
when($"size" < 1000000, "Medium").otherwise("Large")
)
).show
// +----------+--------+--------+---------+------+---------+--------+-------+-------+-----+-------------+
// | date| time| size|r_version|r_arch| r_os| package|version|country|ip_id|download_type|
// +----------+--------+--------+---------+------+---------+--------+-------+-------+-----+-------------+
// |2012-10-01|00:30:13| 35165.0| 2.15.1| i686|linux-gnu|quadprog| 1.5-4| AU| 1| Small|
// |2012-10-02|00:40:14|150000.0| 2.15.1| i686|linux-gnu|quadprog| 1.5-4| US| 2| Medium|
// +----------+--------+--------+---------+------+---------+--------+-------+-------+-----+-------------+
Upvotes: 3