Reputation: 2243
I am trying to implement gradient descent in python. Though my code is returning result by I think results I am getting are completely wrong.
Here is the code I have written:
import numpy as np
import pandas
dataset = pandas.read_csv('D:\ML Data\house-prices-advanced-regression-techniques\\train.csv')
X = np.empty((0, 1),int)
Y = np.empty((0, 1), int)
for i in range(dataset.shape[0]):
X = np.append(X, dataset.at[i, 'LotArea'])
Y = np.append(Y, dataset.at[i, 'SalePrice'])
X = np.c_[np.ones(len(X)), X]
Y = Y.reshape(len(Y), 1)
def gradient_descent(X, Y, theta, iterations=100, learningRate=0.000001):
m = len(X)
for i in range(iterations):
prediction = np.dot(X, theta)
theta = theta - (1/m) * learningRate * (X.T.dot(prediction - Y))
return theta
theta = np.random.randn(2,1)
theta = gradient_descent(X, Y, theta)
print('theta',theta)
The result I get after running this program is:
theta [[-5.23237458e+228] [-1.04560188e+233]]
Which are very high values. Can someone point out the mistake I have made in implementation.
Also, 2nd problem is I have to set value of learning rate very low (in this case i have set to 0.000001) to work other wise program throws an error.
Please help me in diagnosis the problem.
Upvotes: 0
Views: 2744
Reputation: 759
try to reduce the learning rate with iteration otherwise it wont be able to reach the optimal lowest.try this
import numpy as np
import pandas
dataset = pandas.read_csv('start.csv')
X = np.empty((0, 1),int)
Y = np.empty((0, 1), int)
for i in range(dataset.shape[0]):
X = np.append(X, dataset.at[i, 'R&D Spend'])
Y = np.append(Y, dataset.at[i, 'Profit'])
X = np.c_[np.ones(len(X)), X]
Y = Y.reshape(len(Y), 1)
def gradient_descent(X, Y, theta, iterations=50, learningRate=0.01):
m = len(X)
for i in range(iterations):
prediction = np.dot(X, theta)
theta = theta - (1/m) * learningRate * (X.T.dot(prediction - Y))
learningRate/=10;
return theta
theta = np.random.randn(2,1)
theta = gradient_descent(X, Y, theta)
print('theta',theta)
Upvotes: 1