Reputation: 51
I want to implement gradient descent with numpy for linear regression but I have some error in this code:
import numpy as np
# Code Example
rng = np.random.RandomState(10)
X = 10*rng.rand(1000, 5) # feature matrix
y = 0.9 + np.dot(X, [2.2, 4, -4, 1, 2]) # target vector
# GD implementation for linear regression
def GD(X, y, eta=0.1, n_iter=20):
theta = np.zeros((X.shape[0], X.shape[1]))
for i in range(n_iter):
grad = 2 * np.mean((np.dot(theta.T, X) - y) * X)
theta = theta - eta * grad
return theta
# SGD implementation for linear regression
def SGD(X, y, eta=0.1, n_iter=20):
theta = np.zeros(1, X.shape[1])
for i in range(n_iter):
for j in range(X.shape[0]):
grad = 2 * np.mean((np.dot(theta.T, X[j,:]) - y[j]) * X[j,:])
theta = theta - eta * grad
return theta
# MSE loss for linear regression with numpy
def MSE(X, y, theta):
return np.mean((X.dot(theta.T) - y)**2)
# linear regression with GD and MSE with numpy
theta_gd = GD(X, y)
theta_sgd = SGD(X, y)
print('MSE with GD: ', MSE(X, y, theta_gd))
print('MSE with SGD: ', MSE(X, y, theta_sgd))
The error is
grad = 2 * np.mean((np.dot(theta.T, X) - y) * X)
ValueError: operands could not be broadcast together with shapes (5,5) (1000,)
and I can't solve it.
Upvotes: 2
Views: 1064
Reputation: 3883
Each observation has 5 features, and X
contains 1000 observations:
X = rng.rand(1000, 5) * 10 # X.shape == (1000, 5)
Create y
which is perfectly linearly correlated with X
(with no distortions):
real_weights = np.array([2.2, 4, -4, 1, 2]).reshape(-1, 1)
real_bias = 0.9
y = X @ real_weights + real_bias # y.shape == (1000, 1)
G.D. implementation for linear regression:
Note:
w
(weights) is your theta
variable.
I have also added the calculation of b
(bias).
def GD(X, y, eta=0.1, n_iter=20):
# Initialize weights and a bias (all zeros):
w = np.zeros((X.shape[1], 1)) # w.shape == (5, 1)
b = 0
# Gradient descent
for i in range(n_iter):
errors = X @ w + b - y # errors.shape == (1000, 1)
dw = 2 * np.mean(errors * X, axis=0).reshape(5, 1)
db = 2 * np.mean(errors)
w -= eta * dw
b -= eta * db
return w, b
Testing:
w, b = GD(X, y, eta=0.003, n_iter=5000)
print(w, b)
[[ 2.20464905]
[ 4.00510139]
[-3.99569374]
[ 1.00444026]
[ 2.00407476]] 0.7805448262466914
Notes:
SGD
also contains some error..@
operator because it's just my preference over np.dot
.Upvotes: 0
Reputation: 1506
Minor changes in your code that resolve dimensionality issues during matrix multiplication make the code run successfully. In particular, note that a linear regression on a design matrix X
of dimension Nxk
has a parameter vector theta
of size k
.
In addition, I'd suggest some changes in SGD()
that make it a proper stochastic gradient descent. Namely, evaluating the gradient over random subsets of the data realized as realized by randomly partitioning the index set of the train data with np.random.shuffle()
and looping through it. The batch_size
determines the size of each subset after which the parameter estimate is updated. The argument seed
ensures reproducibility.
# GD implementation for linear regression
def GD(X, y, eta=0.001, n_iter=100):
theta = np.zeros(X.shape[1])
for i in range(n_iter):
for j in range(X.shape[0]):
grad = (2 * np.mean(X[j,:] @ theta - y[j]) * X[j,:]) # changed line
theta -= eta * grad
return theta
# SGD implementation for linear regression
def SGD(X, y, eta=0.001, n_iter=1000, batch_size=25, seed=7678):
theta = np.zeros(X.shape[1])
indexSet = list(range(len(X)))
np.random.seed(seed)
for i in range(n_iter):
np.random.shuffle(indexSet) # random shuffle of index set
for j in range(round(len(X) / batch_size)+1):
X_sub = X[indexSet[j*batch_size:(j+1)*batch_size],:]
y_sub = y[indexSet[j*batch_size:(j+1)*batch_size]]
if(len(X_sub) > 0):
grad = (2 * np.mean(X_sub @ theta - y_sub) * X_sub) # changed line
theta -= eta * np.mean(grad, axis=0)
return theta
Running the code, I get
print('MSE with GD : ', MSE(X, y, theta_gd))
print('MSE with SGD: ', MSE(X, y, theta_sgd))
> MSE with GD : 0.07602
MSE with SGD: 0.05762
Upvotes: 1