Reputation: 568
I would like to calculate standard deviation of 'values' in pandas dataframe under condition that it is calculated for common 'grouped_measurement'. After calculating I would like to calculate commented lines.
I tried following line:
df['standard_deviation'] = df['grouped_measurement'].diff().fillna(df['value']).std()
but it isn't working as expected. My full code is shown below:
import pandas as pd
import numpy as np
# Define input dataframe
df = {'servo_in_position': [1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,1,1,1,1,1,1],
'value': [0.2,2.1,3.5,6.7,2.1,3.4,5.7,9.6,3.2,1.2,6.3,8.5,7.4,6.2,3.4,3.8,1.7,2.8,7.6,4.5,9.0]}
df = pd.DataFrame(df,columns= ['servo_in_position','value'])
print("Dataframe is:\n",df)
print("Grouping data according to servo positions, please wait...")
df['grouped_measurement'] = df['servo_in_position'].diff().fillna(df['servo_in_position']).eq(1).cumsum().mask(df['servo_in_position'] == 0, 0)
df['standard_deviation'] = df['grouped_measurement'].diff().fillna(df['value']).std()
# df=df.groupby('grouped_measurement',as_index=False).mean()
# df['new_value']=df['standard_deviation']*100/df['value']
print("Data grouped successfully!")
print("Input data:\n",df)
Expected output is following:
servo_in_position value grouped_measurement standard_deviation
0 1 0.2 1 1.6563011
1 1 2.1 1 1.6563011
2 1 3.5 1 1.6563011
3 0 6.7 0 0
4 0 2.1 0 0
5 0 3.4 0 0
6 1 5.7 2 3.194526569
7 1 9.6 2 3.194526569
8 1 3.2 2 3.194526569
9 1 1.2 2 3.194526569
10 1 6.3 2 3.194526569
11 0 8.5 0 0
12 0 7.4 0 0
13 0 6.2 0 0
14 0 3.4 0 0
15 1 3.8 3 2.832666588
16 1 1.7 3 2.832666588
17 1 2.8 3 2.832666588
18 1 7.6 3 2.832666588
19 1 4.5 3 2.832666588
20 1 9 3 2.832666588
Upvotes: 0
Views: 1633
Reputation: 862661
You can simplify your code - create Series
s1
and s2
and for second use GroupBy.transform
with std
for filling new column with aggregtae values, also added numpy.where
for set 0
by condition:
mask = df['servo_in_position'] == 0
s1 = df['servo_in_position'].diff().ne(0).cumsum()
s2 = df['value'].groupby(s1).transform('std')
#if need omit helper column simple remove df['grouped_measurement'] = np.where(mask, 0, s1)
df['grouped_measurement'] = np.where(mask, 0, s1)
df['standard_deviation'] = np.where(mask, 0, s2)
print("Dataframe is:\n",df)
servo_in_position value grouped_measurement standard_deviation
0 1 0.2 1 1.656301
1 1 2.1 1 1.656301
2 1 3.5 1 1.656301
3 0 6.7 0 0.000000
4 0 2.1 0 0.000000
5 0 3.4 0 0.000000
6 1 5.7 3 3.194527
7 1 9.6 3 3.194527
8 1 3.2 3 3.194527
9 1 1.2 3 3.194527
10 1 6.3 3 3.194527
11 0 8.5 0 0.000000
12 0 7.4 0 0.000000
13 0 6.2 0 0.000000
14 0 3.4 0 0.000000
15 1 3.8 5 2.832667
16 1 1.7 5 2.832667
17 1 2.8 5 2.832667
18 1 7.6 5 2.832667
19 1 4.5 5 2.832667
20 1 9.0 5 2.832667
Upvotes: 1
Reputation: 42916
First we create a series s
which defines each change of servo_in_pisition
as an unique group.
Then we GroupBy.transform(std)
on these groups. We use transform
to get an equal length vector back so we can define it as a new column to our exisiting dataframe, else the data would get aggregated.
We use np.where
to conditionally assign the std
if the value of servo_in_pisition != 0
s1 = df['servo_in_position'].diff().ne(0).cumsum()
s2 = df.groupby(s)['value'].transform('std')
df['standard_deviation'] = np.where(df['servo_in_position'].ne(0), s2, 0)
Output
servo_in_position value standard_deviation
0 1 0.2 1.656301
1 1 2.1 1.656301
2 1 3.5 1.656301
3 0 6.7 0.000000
4 0 2.1 0.000000
5 0 3.4 0.000000
6 1 5.7 3.194527
7 1 9.6 3.194527
8 1 3.2 3.194527
9 1 1.2 3.194527
10 1 6.3 3.194527
11 0 8.5 0.000000
12 0 7.4 0.000000
13 0 6.2 0.000000
14 0 3.4 0.000000
15 1 3.8 2.832667
16 1 1.7 2.832667
17 1 2.8 2.832667
18 1 7.6 2.832667
19 1 4.5 2.832667
20 1 9.0 2.832667
Upvotes: 1