Reputation: 65
I have a csv with several columns, one of them is the city column. There are several cities and also the same city, repeated several times. I would like to set up a bar chart with how many cities appear in CSV. Example:
Y X
5 Belo Horizonte
1 Vespasiano
4 São Paulo
I made the following code, but I have gotten error, which is right after the code.
Code:
import matplotlib.pyplot as plt; plt.rcdefaults()
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
#lendo o arquivo
tb_usuarios = 'tb_usuarios.csv'
usuarios = pd.read_csv(tb_usuarios,
header=0,
index_col=False
)
print(usuarios.head())
usuarios["vc_municipio"] = usuarios["vc_municipio"].dropna()
usuarios["vc_municipio"] = usuarios["vc_municipio"].str.upper()
municipio = usuarios.groupby(['vc_municipio'])
print(municipio)
y_pos = usuarios.groupby(['vc_municipio'])['vc_municipio'].count()
print(y_pos)
plt.bar(y_pos, municipio, align='center', alpha=0.5)
plt.xticks(y_pos, municipio)
plt.ylabel('Qtd')
plt.title('Municipio')
plt.show()
Error:
Traceback (most recent call last):
File "C:/Users/Henrique Mendes/PycharmProjects/emprestimo/venv1/emprestimo.py", line 20, in <module>
plt.bar(y_pos, municipio, align='center', alpha=0.5)
File "C:\Users\Henrique Mendes\PycharmProjects\emprestimo\venv1\lib\site-packages\matplotlib\pyplot.py", line 2440, in bar
**({"data": data} if data is not None else {}), **kwargs)
File "C:\Users\Henrique Mendes\PycharmProjects\emprestimo\venv1\lib\site-packages\matplotlib\__init__.py", line 1601, in inner
return func(ax, *map(sanitize_sequence, args), **kwargs)
File "C:\Users\Henrique Mendes\PycharmProjects\emprestimo\venv1\lib\site-packages\matplotlib\axes\_axes.py", line 2348, in bar
self._process_unit_info(xdata=x, ydata=height, kwargs=kwargs)
File "C:\Users\Henrique Mendes\PycharmProjects\emprestimo\venv1\lib\site-packages\matplotlib\axes\_base.py", line 2126, in _process_unit_info
kwargs = _process_single_axis(ydata, self.yaxis, 'yunits', kwargs)
File "C:\Users\Henrique Mendes\PycharmProjects\emprestimo\venv1\lib\site-packages\matplotlib\axes\_base.py", line 2108, in _process_single_axis
axis.update_units(data)
File "C:\Users\Henrique Mendes\PycharmProjects\emprestimo\venv1\lib\site-packages\matplotlib\axis.py", line 1493, in update_units
default = self.converter.default_units(data, self)
File "C:\Users\Henrique Mendes\PycharmProjects\emprestimo\venv1\lib\site-packages\matplotlib\category.py", line 115, in default_units
axis.set_units(UnitData(data))
File "C:\Users\Henrique Mendes\PycharmProjects\emprestimo\venv1\lib\site-packages\matplotlib\category.py", line 181, in __init__
self.update(data)
File "C:\Users\Henrique Mendes\PycharmProjects\emprestimo\venv1\lib\site-packages\matplotlib\category.py", line 215, in update
for val in OrderedDict.fromkeys(data):
TypeError: unhashable type: 'numpy.ndarray'
My outputs:
"C:\Users\Henrique Mendes\PycharmProjects\emprestimo\venv1\Scripts\python.exe" "C:/Users/Henrique Mendes/PycharmProjects/emprestimo/venv1/emprestimo.py"
pr_usuario bl_administrador dt_nascimento ... dt_cheque es_anexo dt_anexo
0 2 0 24/02/1980 ... NaN NaN NaN
1 3 0 05/09/1985 ... NaN NaN NaN
2 4 1 20/03/1984 ... NaN NaN NaN
3 5 1 20/01/1982 ... NaN NaN NaN
4 6 0 25/05/1985 ... NaN NaN NaN
[5 rows x 30 columns]
{'BELO HORIZONTE': Int64Index([0, 1, 2, 3, 6, 9, 10, 14, 17, 20, 22, 25], dtype='int64'), 'BRASILIA': Int64Index([4], dtype='int64'), 'CONTAGEM': Int64Index([23], dtype='int64'), 'CURITIBA': Int64Index([5, 7, 15, 18, 19], dtype='int64'), 'SANTA LUZIA': Int64Index([21], dtype='int64'), 'VESPASIANO': Int64Index([24], dtype='int64')}
vc_municipio
BELO HORIZONTE 12
BRASILIA 1
CONTAGEM 1
CURITIBA 5
SANTA LUZIA 1
VESPASIANO 1
Name: vc_municipio, dtype: int64
How can I do this chart?
Upvotes: 0
Views: 1050
Reputation: 62513
pandas
:.csv
with the following form0.0,BELO HORIZONTE
1.0,BELO HORIZONTE
2.0,BELO HORIZONTE
3.0,BELO HORIZONTE
6.0,BELO HORIZONTE
9.0,BELO HORIZONTE
10.0,BELO HORIZONTE
14.0,BELO HORIZONTE
17.0,BELO HORIZONTE
20.0,BELO HORIZONTE
22.0,BELO HORIZONTE
25.0,BELO HORIZONTE
4.0,BRASILIA
23.0,CONTAGEM
5.0,CURITIBA
7.0,CURITIBA
15.0,CURITIBA
18.0,CURITIBA
19.0,CURITIBA
21.0,SANTA LUZIA
24.0,VESPASIANO
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('test.csv', header=None)
df.columns = ['value', 'city']
value city
0 0.0 BELO HORIZONTE
1 1.0 BELO HORIZONTE
2 2.0 BELO HORIZONTE
3 3.0 BELO HORIZONTE
4 6.0 BELO HORIZONTE
5 9.0 BELO HORIZONTE
6 10.0 BELO HORIZONTE
7 14.0 BELO HORIZONTE
8 17.0 BELO HORIZONTE
9 20.0 BELO HORIZONTE
10 22.0 BELO HORIZONTE
11 25.0 BELO HORIZONTE
12 4.0 BRASILIA
13 23.0 CONTAGEM
14 5.0 CURITIBA
15 7.0 CURITIBA
16 15.0 CURITIBA
17 18.0 CURITIBA
18 19.0 CURITIBA
19 21.0 SANTA LUZIA
20 24.0 VESPASIANO
# groupby & count
city_count = df.groupby('city').count()
value
city
BELO HORIZONTE 12
BRASILIA 1
CONTAGEM 1
CURITIBA 5
SANTA LUZIA 1
VESPASIANO 1
# plot
city_count.plot.bar()
plt.ylabel('Qtd')
plt.title('Municipio')
plt.show()
seaborn
:import seaborn as sns
sns.barplot(x=city_count.index, y='value', data=city_count)
plt.xticks(rotation=45)
plt.show()
Upvotes: 1
Reputation: 2919
municipio = usuarios.groupby(['vc_municipio'])
returns a groupby object in pandas which is causing your error as matplotlib doesn't handle that.
plt.bar
takes x values followed by y values (see docs).
matplotlib.pyplot.bar(x, height, width=0.8, bottom=None, *, align='center', data=None, **kwargs)
Luckily for you, when you do a groupby
in pandas it automatically consolidates x values (or categories) as indices for you.
Assuming that municipio
is meant to be a list of categories (you want the count by city?) then the following should work.
Replacing your code
plt.bar(y_pos, municipio, align='center', alpha=0.5)
with
plt.bar(y_pos.index, y_pos, align='center', alpha=0.5)
Alternatively, you can use the pandas version of plt.bar
(which extends matplot lib) to natively handle some of the dataframe quirks.
Upvotes: 1