Reputation: 515
I am currently trying to have multiple layers with a customized activation with the name cust_sig
. But when I try to compile the model, I get a ValueError raised as multiple layers have the same name cust_sig
. I am aware that I can manually change the name for every layer but wanted to know if there is something that can be done to automatically have _1, _2, ...
added to the name as it does for in-built layers. The model definition can be found below.
# Creating a model
from tensorflow.python.keras import keras
from tensorflow.python.keras.models import Model
from tensorflow.python.keras.layers import Dense
# Custom activation function
from tensorflow.python.keras.layers import Activation
from tensorflow.python.keras import backend as K
from keras.utils.generic_utils import get_custom_objects
def custom_activation(x):
return (K.sigmoid(x) * 5) - 1
get_custom_objects().update({'custom_activation': Activation(custom_activation)})
data_format = 'channels_first'
spec_input = keras.layers.Input(shape=(1, 3, 256), name='spec')
x = keras.layers.Flatten(data_format)(spec_input)
for layer in range(3):
x = Dense(512)(x)
x = Activation('custom_activation', name='cust_sig')(x)
out = Dense(256, activation="sigmoid", name='out')(x)
model = Model(inputs=spec_input, outputs=out)
The error message is shown below
Traceback (most recent call last):
File "/home/xyz/anaconda3/envs/ctf/lib/python3.7/site-packages/tensorflow/python/training/tracking/base.py", line 457, in _method_wrapper
result = method(self, *args, **kwargs)
File "/home/xyz/anaconda3/envs/ctf/lib/python3.7/site-packages/tensorflow/python/keras/engine/network.py", line 315, in _init_graph_network
self.inputs, self.outputs)
File "/home/xyz/anaconda3/envs/ctf/lib/python3.7/site-packages/tensorflow/python/keras/engine/network.py", line 1861, in _map_graph_network
str(all_names.count(name)) + ' times in the model. '
ValueError: The name "cust_sig" is used 3 times in the model. All layer names should be unique.
Upvotes: 4
Views: 8122
Reputation: 879
The Tensorflow library does not provide auto incrementation for custom names. You have to create a whole new Layer Class, which is impractical.
The following trick is the simplest method to create an Activation layer and name it. Feel free to copy-paste, it requires no changes:
def custom_activation_layer(activation, name=None):
class_name = tf.keras.layers.Activation.__name__
# Set the desired name here. We default to the function name.
if name:
tf.keras.layers.Activation.__name__ = name
else:
tf.keras.layers.Activation.__name__ = f'Activation_{activation.__name__}'
# The layer name is set in the constructor.
activation_layer = tf.keras.layers.Activation(activation)
tf.keras.layers.Activation.__name__ = class_name
return activation_layer
Simply replace your activation layers with this function:
# Replace the activation layer...
layer = tf.keras.layers.Activation(my_custom_activation)
# ... With the function.
layer = custom_activation_layer(my_custom_activation)
When plotting your model's graph, the name is auto-incremented, avoiding graph Errors. It displays as such:
model = create_model()
tf.keras.utils.plot_model(model, show_shapes=True)
Upvotes: 0
Reputation: 333
If you want to use a specific_name
multiple times with number suffix, use this:
tf.get_default_graph().unique_name("specific_name")
or
tf.compat.v1.get_default_graph().unique_name("specific_name")
In your case:
...
for layer in range(3):
x = Dense(512)(x)
x = Activation('custom_activation', name=tf.get_default_graph().unique_name("cust_sig"))(x)
...
Upvotes: 3
Reputation: 19816
Below should do:
def custom_activation(x):
return (K.sigmoid(x) * 5) - 1
class CustSig(Layer):
def __init__(self, my_activation, **kwargs):
super(CustSig, self).__init__(**kwargs)
self.supports_masking = True
self.activation = my_activation
def call(self, inputs):
return self.activation(inputs)
def get_config(self):
config = {'activation': activations.serialize(self.activation)}
base_config = super(Activation, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
def compute_output_shape(self, input_shape):
return input_shape
From source code, automatic naming works as follows:
if not name:
self._name = backend.unique_object_name(
generic_utils.to_snake_case(self.__class__.__name__),
zero_based=zero_based)
else:
self._name = name
The Keras graph is checked for existing objects with the same name as the object you're defining - if any exist, continues to increment by 1 until none match. The catch is, you cannot specify name=
, as that eliminates automatic naming per above conditional.
The only workaround is likely defining your own custom activation layer using desired name as class name as above, which manifests itself as follows:
ipt = Input(shape=(1, 3, 256), name='spec')
x = Flatten('channels_last')(ipt)
for _ in range(3):
x = Dense(512)(x)
x = CustSig(custom_activation)(x)
out = Dense(256, activation='sigmoid', name='out')(x)
model = Model(ipt, out)
print(model.layers[3].name)
print(model.layers[5].name)
print(model.layers[7].name)
cust_sig
cust_sig_1
cust_sig_2
Upvotes: 7
Reputation: 4485
If you check the source code of Layer
class, you can find these lines that decide the name of layer.
if not name:
prefix = self.__class__.__name__
name = _to_snake_case(prefix) + '_' + str(K.get_uid(prefix))
self.name = name
K.get_uid(prefix)
will get the unique id from the graph, that's why you see activation_1
, activation_2
.
If you want to have the same effect on your customized activation function, a better way is to define your own class which inherits from Layer
.
class MyAct(Layer):
def __init__(self):
super().__init__()
def call(self, inputs):
return (K.sigmoid(inputs) * 5) - 1
spec_input = Input(shape=(10,10))
x = Flatten()(spec_input)
for layer in range(3):
x = Dense(512)(x)
x = MyAct()(x)
model = Model(spec_input, x)
model.summary()
Output
# Layer (type) Output Shape Param #
# =================================================================
# input_1 (InputLayer) (None, 10, 10) 0
# _________________________________________________________________
# flatten_1 (Flatten) (None, 100) 0
# _________________________________________________________________
# dense_1 (Dense) (None, 512) 51712
# _________________________________________________________________
# my_act_1 (MyAct) (None, 512) 0
# _________________________________________________________________
# dense_2 (Dense) (None, 512) 262656
# _________________________________________________________________
# my_act_2 (MyAct) (None, 512) 0
# _________________________________________________________________
# dense_3 (Dense) (None, 512) 262656
# _________________________________________________________________
# my_act_3 (MyAct) (None, 512) 0
# =================================================================
# Total params: 577,024
# Trainable params: 577,024
# Non-trainable params: 0
Upvotes: 4