Reputation: 15
I am trying to implement a Bayesian network and solve a regression problem using PYMC3. In my model, I have a fair coin as the parent node. If the parent node is H, the child node selects the normal distribution N(5,0.2); if T, the child selects N(0,0.5). Here is an illustration of my network.
To simulate this network, I generated a sample dataset and tried doing Bayesian regression using the code below. Currently, the model does regression only for the child node as if the parent node does not exist. I would greatly appreciate it if anyone can let me know how to implement the conditional probability P(D|C). Ultimately, I am interested in finding the probability distribution for mu1 and mu2. Thank you!
# Generate data for coin flip P(C) and store in c1
theta_real = 0.5 # unkown value in a real experiment
n_sample = 10
c1 = bernoulli.rvs(p=theta_real, size=n_sample)
# Generate data for normal distribution P(D|C) and store in d1
np.random.seed(123)
mu1 = 0
sigma1 = 0.5
mu2 = 5
sigma2 = 0.2
d1 = []
for index, item in enumerate(c1):
if item == 0:
d1.extend(normal(mu1, sigma1, 1))
else:
d1.extend(normal(mu2, sigma2, 1))
# I start building PYMC3 model here
c1_tensor = theano.shared(np.array(c1))
d1_tensor = theano.shared(np.array(d1))
with pm.Model() as model:
# define prior for c1. I am not sure how to do this.
#c1_present = pm.Categorical('c1',observed=c1_tensor)
# how do I incorporate P(D | C)
mu_prior = pm.Normal('mu', mu=2, sd=2, shape=1)
sigma_prior = pm.HalfNormal('sigma', sd=2, shape=1)
y_likelihood = pm.Normal('y', mu=mu_prior, sd=sigma_prior, observed=d1_tensor)
Upvotes: 1
Views: 731
Reputation: 76700
This answer is to supplement @balleveryday's answer, which suggests the Gaussian Mixture Model, but had some trouble getting the symmetry breaking to work. Admittedly, the symmetry breaking in the official example is done in the context of Metropolis-Hastings sampling, whereas I think NUTS might be a little more sensitive to encountering impossible values (not sure). Here's what worked for me:
import numpy as np
import pymc3 as pm
from scipy.stats import bernoulli
import theano.tensor as tt
# everything should reproduce
np.random.seed(123)
n_sample = 2000
# Generate data for coin flip P(C) and store in c1
theta_real = 0.2 # unknown value in a real experiment
c1 = bernoulli.rvs(p=theta_real, size=n_sample)
# Generate data for normal distribution P(D|C) and store in d1
mu1, mu2 = 0, 5
sigma1, sigma2 = 0.5, 0.2
d1 = np.empty_like(c1, dtype=np.float64)
d1[c1 == 0] = np.random.normal(mu1, sigma1, np.sum(c1 == 0))
d1[c1 == 1] = np.random.normal(mu2, sigma2, np.sum(c1 == 1))
with pm.Model() as gmm_asym:
# mixture vector
w = pm.Dirichlet('p', a=np.ones(2))
# Gaussian parameters (testval helps start off ordered)
mu = pm.Normal('mu', 0, 20, shape=2, testval=[-10, 10])
sigma = pm.HalfNormal('sigma', sd=2, shape=2)
# break symmetry, forcing mu[0] < mu[1]
order_means_potential = pm.Potential('order_means_potential',
tt.switch(mu[1] - mu[0] < 0, -np.inf, 0))
# observed
pm.NormalMixture('like', w=w, mu=mu, sigma=sigma, observed=d1)
# reproducible sampling
tr_gmm_asym = pm.sample(tune=2000, target_accept=0.9, random_seed=20191121)
This produces samples with the statistics
mean sd mc_error hpd_2.5 hpd_97.5 n_eff Rhat
mu__0 0.004549 0.011975 0.000226 -0.017398 0.029375 2425.487301 0.999916
mu__1 5.007663 0.008993 0.000166 4.989247 5.024692 2181.134002 0.999563
p__0 0.789983 0.009091 0.000188 0.773059 0.808062 2417.356539 0.999788
p__1 0.210017 0.009091 0.000188 0.191938 0.226941 2417.356539 0.999788
sigma__0 0.497322 0.009103 0.000186 0.480394 0.515867 2227.397854 0.999358
sigma__1 0.191310 0.006633 0.000141 0.178924 0.204859 2286.817037 0.999614
and the traces
Upvotes: 1
Reputation: 932
You could use the Dirichlet distribution as a prior for the coin toss and NormalMixture
as the prior of the two Gaussians. In the following snippet I changed the fairness of the coin and increased the number of coin tosses, but you could adjust these in any way want:
import numpy as np
import pymc3 as pm
from scipy.stats import bernoulli
# Generate data for coin flip P(C) and store in c1
theta_real = 0.2 # unkown value in a real experiment
n_sample = 2000
c1 = bernoulli.rvs(p=theta_real, size=n_sample)
# Generate data for normal distribution P(D|C) and store in d1
np.random.seed(123)
mu1 = 0
sigma1 = 0.5
mu2 = 5
sigma2 = 0.2
d1 = []
for index, item in enumerate(c1):
if item == 0:
d1.extend(np.random.normal(mu1, sigma1, 1))
else:
d1.extend(np.random.normal(mu2, sigma2, 1))
with pm.Model() as model:
w = pm.Dirichlet('p', a=np.ones(2))
mu = pm.Normal('mu', 0, 20, shape=2)
sigma = np.array([0.5,0.2])
pm.NormalMixture('like',w=w,mu=mu,sigma=sigma,observed=np.array(d1))
trace = pm.sample()
pm.summary(trace)
This will give you the following:
mean sd mc_error hpd_2.5 hpd_97.5 n_eff Rhat
mu__0 4.981222 0.023900 0.000491 4.935044 5.027420 2643.052184 0.999637
mu__1 -0.007660 0.004946 0.000095 -0.017388 0.001576 2481.146286 1.000312
p__0 0.213976 0.009393 0.000167 0.195602 0.231803 2245.905021 0.999302
p__1 0.786024 0.009393 0.000167 0.768197 0.804398 2245.905021 0.999302
The parameters are recovered nicely as you can also see from the traceplots:
The above implementation will give you the posterior of theta_real
, mu1
and mu2
but I could not get convergence when I added sigma1
and sigma2
as parameters to be estimated by the data (even though the prior was quite narrow):
with pm.Model() as model:
w = pm.Dirichlet('p', a=np.ones(2))
mu = pm.Normal('mu', 0, 20, shape=2)
sigma = pm.HalfNormal('sigma', sd=2, shape=2)
pm.NormalMixture('like',w=w,mu=mu,sigma=sigma,observed=np.array(d1))
trace = pm.sample()
print(pm.summary(trace))
Auto-assigning NUTS sampler...
Initializing NUTS using jitter+adapt_diag...
Multiprocess sampling (4 chains in 4 jobs)
NUTS: [sigma, mu, p]
Sampling 4 chains: 100%|██████████| 4000/4000 [00:10<00:00, 395.57draws/s]
The acceptance probability does not match the target. It is 0.883057127209148, but should be close to 0.8. Try to increase the number of tuning steps.
The gelman-rubin statistic is larger than 1.4 for some parameters. The sampler did not converge.
The estimated number of effective samples is smaller than 200 for some parameters.
mean sd mc_error ... hpd_97.5 n_eff Rhat
mu__0 1.244021 2.165433 0.216540 ... 5.005507 2.002049 212.596596
mu__1 3.743879 2.165122 0.216510 ... 5.012067 2.002040 235.750129
p__0 0.643069 0.248630 0.024846 ... 0.803369 2.004185 30.966189
p__1 0.356931 0.248630 0.024846 ... 0.798632 2.004185 30.966189
sigma__0 0.416207 0.125435 0.012517 ... 0.504110 2.009031 17.333177
sigma__1 0.271763 0.125539 0.012533 ... 0.497208 2.007779 19.217223
[6 rows x 7 columns]
Based on that you most likely will need to reparametrize if you also wanted to estimate the two standard deviations from this data.
Upvotes: 1