Reputation: 13
I have this code to solve a simple first order ODE using odeint. I managed to plot the solution y(r), but I also want to plot the derivative y'= dy/dr. I know y' it is given by f(y,r), but I'm not sure how to call the function with the output of the integration. Thank you in advance.
from math import sqrt
from numpy import zeros,linspace,array
from scipy.integrate import odeint
import matplotlib.pylab as plt
def f(y,r):
f = zeros(1)
f[0] = -(y[0]*(y[0]-1.0)/r)-y[0]*(2/r+\
((r/m)/(1-r**2/m))*(2*sqrt(1-r**2/m)-k)/(k-sqrt(1-r**2/m)))\
-(1/(1-r**2/m))*(-l*(l+1)/r+\
(3*r/m)*(k+2*sqrt(1-r**2/m))/(k-sqrt(1-r**2/m)))\
+((4*r**3)/((m**2)*(1-r**2/m)))*(1/(k-sqrt(1-r**2/m))**2)
return f
m = 1.15
k = 3*sqrt(1-1/m)
l = 2.0
r = 1.0e-10
rf = 1.0
rspan = linspace(r,rf,1000)
y0 = array([l])
sol = odeint(f,y0,rspan)
plt.plot(rspan,sol,'k:',lw=1.5)
Upvotes: 1
Views: 749
Reputation: 4547
From odeint
documentation:
For new code, use scipy.integrate.solve_ivp to solve a differential equation.
I have modified your code in the following manner and obtained the figure below.
import matplotlib.pyplot as plt
from numpy import gradient, squeeze, sqrt
from scipy.integrate import solve_ivp
def fun(t, y):
l = 2
m = 1.15
k = 3 * sqrt(1 - 1 / m)
return (-y * (y - 1) / t - y * (2 / t + t / m / (1 - t ** 2 / m)
* (2 * sqrt(1 - t ** 2 / m) - k)
/ (k - sqrt(1 - t ** 2 / m)))
- 1 / (1 - t ** 2 / m) * (-l * (l + 1) / t + 3 * t / m
* (k + 2 * sqrt(1 - t ** 2 / m))
/ (k - sqrt(1 - t ** 2 / m)))
+ 4 * t ** 3 / m ** 2 / (1 - t ** 2 / m)
/ (k - sqrt(1 - t ** 2 / m)) ** 2)
sol = solve_ivp(fun, t_span=[1e-10, 1], y0=[2], method='BDF',
dense_output=True)
if sol.success is True:
print(sol.t.shape, sol.y.shape)
plt.plot(sol.t, squeeze(sol.y), color='xkcd:avocado',
label='Scipy Solution')
plt.plot(sol.t, fun(sol.t, squeeze(sol.y)), linestyle='dashed',
color='xkcd:purple', label='Derivative Using the Function')
plt.plot(sol.t, gradient(squeeze(sol.y), sol.t), linestyle='dotted',
color='xkcd:bright orange', label='Derivative Using Numpy')
plt.legend()
plt.tight_layout()
plt.savefig('so.png', bbox_inches='tight', dpi=300)
plt.show()
To address the comment about squeeze
, please see below (extracted from scipy.integrate.solve_ivp):
where n
is defined according to:
Upvotes: 1