Reputation: 303
I build a MLP using keras using below code.
model_relu = Sequential()
model_relu.add(Dense(256, activation='relu', input_shape=(input_dim,), kernel_initializer=RandomNormal(mean=0.0, stddev=0.062, seed=None)))
model_relu.add(Dense(128, activation='relu', kernel_initializer = RandomNormal(mean=0.0, stddev=0.125, seed=None)) )
model_relu.add(Dense(64, activation='relu', kernel_initializer = RandomNormal(mean=0.0, stddev=0.07, seed=None)) )
model_relu.add(Dense(output_dim, activation='softmax'))
model_relu.summary()
The summary is
Model: "sequential_19"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
dense_49 (Dense) (None, 256) 200960
_________________________________________________________________
dense_50 (Dense) (None, 128) 32896
_________________________________________________________________
dense_51 (Dense) (None, 64) 8256
_________________________________________________________________
dense_52 (Dense) (None, 10) 650
I want to how many hidden layers this MLP has. Should we call 3 as number of hidden layers in this or 4 hidden layers. Is total number of layers is 5 (Input + 3 hidden + 1 output(softmax)?
Upvotes: 0
Views: 264
Reputation: 1855
You have 1 input layer
with 256 neurons, 2 hidden layers
with 128 and 64 neurons and finally you have 1 output layer
with 10 neurons.
Upvotes: 2