Reputation: 1203
model = Sequential()
model.add(Conv2D(32, (3, 3), input_shape=input_shape))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(64, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(64))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(1))
model.add(Activation('sigmoid'))
As far as I understand, model.add(Conv2D(32, (3, 3), input_shape=input_shape))
is the input layer here and model.add(Activation('sigmoid'))
is the output layer.
There are a total 13
other layers between the input and output layers. So are there 13 hidden layers in the model? Or less? What are the names of the layers that should be counted as hidden layers?
I am confused about whether Activation
or MaxPooling2D
or Dropout
should be counted as a single hidden layer or not.
Upvotes: 0
Views: 329
Reputation: 51
Activation functions are not the hidden layers. Layers will be - Conv2D,MaxPooling2D,Flatten,Dense
You can use below code to get the model architecture details.
model.summary()
Upvotes: 1