Reputation: 1138
I am trying to understand how backpropagation works. So I wrote a straight forward script to try to understand it before writing a generalized algorithm.
What the script is trying to do is to train an XOR gate. My neural network is very simple. 2 inputs, 2 hidden neurons, and 1 output. (Note that the bias are omitted for simplicity)
(for more information see the images attached at the end)
The problem is that after training the perceptron it doesn't work and I don't know where the problem is. It can be in my equations or in my implementation.
Code:
def xor(self):
print('xor')
X = np.array([[1,1],[1,0],[0,1],[0,0]]) #X.shape = (4,2)
y = np.array([0,1,1,0])
w0 = np.array([[.9,.1],[.3,.5]]) #random weights layer0
w1 = np.array([.8,.7]) #random wights layer1
#forward pass
youtput=[]
for i in range(X.shape[0]):#X.shape = (4,2)
#print('x0', X[i][0])
#print('x1', X[i][1])
h0 = self.sig(w0[0,0]*X[i][0] + w0[1,0]*X[i][1])
h1 = self.sig(w0[0,1]*X[i][0] + w0[1,1]* X[i][1])
y0 = self.sig(w1[0]* h0 + w1[1] * h1) # shape = (4,)
youtput.append(y0)
print('y0',y0)
#backpropagation
dey0 = -(y[i]-y0) # y[i] -> desired output | y0 -> output
deW0_00 = dey0 * y0 * (1 - y0) * w1[0] * h0 * (1 - h0) * X[i][0]
deW0_01 = dey0 * y0 * (1 - y0) * w1[1] * h1 * (1 - h1) * X[i][0]
deW0_10 = dey0 * y0 * (1 - y0) * w1[0] * h0 * (1 - h0) * X[i][1]
deW0_11 = dey0 * y0 * (1 - y0) * w1[1] * h1 * (1 - h1) * X[i][1]
deW1_00 = dey0 * h0
deW1_10 = dey0 * h1
w0[0,0] = self.gradient(w0[0,0], deW0_00)
w0[0,1] = self.gradient(w0[0,1], deW0_01)
w0[1,0] = self.gradient(w0[1,0], deW0_10)
w0[1,1] = self.gradient(w0[1,1], deW0_11)
w1[0] = self.gradient(w1[0], deW1_00)
w1[1] = self.gradient(w1[1], deW1_10)
#print('print W0, ', w0)
#print('print W1, ', w1)
print('error -> ', self.error(y,youtput ))
#forward pass
youtput2= []
for i in range(X.shape[0]):#X.shape = (4,2)
print('x0 =', X[i][0], ', x1 =', X[i][1])
h0 = self.sig(w0[0,0]*X[i][0] + w0[1,0]*X[i][1])
h1 = self.sig(w0[0,1]*X[i][0] + w0[1,1]* X[i][1])
y0 = self.sig(w1[0]* h0 + w1[1] * h1)
youtput2.append(y0)
print('y0----->',y0)
print('error -> ', self.error(y,youtput2 ))
def gradient(self, w, w_derivative):
alpha = .001
for i in range(1000000):
w = w - alpha * w_derivative
return w
def error(self, y, yhat):
e = 0
for i in range (y.shape[0]):
e = e + .5 * (y[i]- yhat[i])**2
return e
def sig(self,x):
return 1 / (1 + math.exp(-x))
Result
PS C:\gitProjects\perceptron> python .\perceptron.py
xor
y0 0.7439839341840395
y0 0.49999936933995615
y0 0.4999996364775347
y0 7.228146514841657e-229
error -> 0.5267565442535
x0 = 1 , x1 = 1
y0-----> 0.49999999999999856
x0 = 1 , x1 = 0
y0-----> 0.4999993695274945
x0 = 0 , x1 = 1
y0-----> 0.49999963653435153
x0 = 0 , x1 = 0
y0-----> 7.228146514841657e-229
error -> 0.3750004969693411
Upvotes: 3
Views: 1492
Reputation: 315
Just changed the way you "loop", it seems to be working fine now (modified code hereunder).
I may have missed something but your backprop looks ok.
import numpy as np
import math
class perceptronmonocouche(object):
def xor(self):
print('xor')
X = np.array([[1,1],[1,0],[0,1],[0,0]]) #X.shape = (4,2)
y = np.array([0,1,1,0])
w0 = np.array([[.9,.1],[.3,.5]]) #random weights layer0
w1 = np.array([.8,.7]) #random wights layer1
max_epochs = 10000
epochs = 0
agreed_convergence_error = 0.001
error = 1
decision_threshold = 0.5
while epochs <= max_epochs and error > agreed_convergence_error:
#forward pass
epochs += 1
youtput=[]
for i in range(X.shape[0]):#X.shape = (4,2)
#print('x0', X[i][0])
#print('x1', X[i][1])
h0 = self.sig(w0[0,0]*X[i][0] + w0[1,0]*X[i][1])
h1 = self.sig(w0[0,1]*X[i][0] + w0[1,1]* X[i][1])
y0 = self.sig(w1[0]* h0 + w1[1] * h1) # shape = (4,)
youtput.append(y0)
if epochs%1000 ==0:
print('y0',y0)
if y0 > decision_threshold:
prediction = 1
else:
prediction = 0
print('real value', y[i])
print('predicted value', prediction)
#backpropagation
dey0 = -(y[i]-y0) # y[i] -> desired output | y0 -> output
dew0_00 = dey0 * y0 * (1 - y0) * w1[0] * h0 * (1 - h0) * X[i][0]
dew0_01 = dey0 * y0 * (1 - y0) * w1[1] * h1 * (1 - h1) * X[i][0]
dew0_10 = dey0 * y0 * (1 - y0) * w1[0] * h0 * (1 - h0) * X[i][1]
dew0_11 = dey0 * y0 * (1 - y0) * w1[1] * h1 * (1 - h1) * X[i][1]
dew1_0 = dey0 * h0
dew1_1 = dey0 * h1
w0[0,0] = self.gradient(w0[0,0], dew0_00)
w0[0,1] = self.gradient(w0[0,1], dew0_01)
w0[1,0] = self.gradient(w0[1,0], dew0_10)
w0[1,1] = self.gradient(w0[1,1], dew0_11)
w1[0] = self.gradient(w1[0], dew1_0)
w1[1] = self.gradient(w1[1], dew1_1)
#print('print W0, ', w0)
#print('print W1, ', w1)
error = self.error(y,youtput )
if epochs%1000 ==0:
print('error -> ', error)
def gradient(self, w, w_derivative):
alpha = .2
w = w - alpha * w_derivative
return w
def error(self, y, yhat):
e = 0
for i in range (y.shape[0]):
e = e + .5 * (y[i]- yhat[i])**2
return e
def sig(self,x):
return 1 / (1 + math.exp(-x))
p = perceptronmonocouche()
p.xor()
Result
y0 0.05892656406522486
real value 0
predicted value 0
y0 0.9593864604895951
real value 1
predicted value 1
y0 0.9593585562506973
real value 1
predicted value 1
y0 0.03119936553811551
real value 0
predicted value 0
error -> 0.003873463452052477
Note : Here it works fine without the bias, however I'd recommend anytime you can to let the bias for the propagation.
Upvotes: 2