Reputation: 178
I am training a Keras model for my data. I have to split the data into 3 parts and I am calling the same keras model for each split and trying to fit and predict consecutively.
I have a suspicion that every-time I call the model the model weights remain the same after reaching convergence from last training. And the next model called starts minimising the error from its previous state. I want that each time the model is trained, it starts to fit the data from a different random weights initialisation. Because all of my 3 splits are subset of the same dataset and I don't want any data leakage into the model due to seeing the split data beforehand while training.
Can I know if it is reinitialising the weights every-time the model is fit. And if not how can I do so?
here is how my code looks like
model = Sequential()
model.add(Dense(512, input_dim=77, kernel_initializer='RandomNormal', activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(256, kernel_initializer='RandomNormal', activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(512, kernel_initializer='RandomNormal', activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(256, kernel_initializer='RandomNormal', activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(512, kernel_initializer='RandomNormal', activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(256, kernel_initializer='RandomNormal', activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(1))
# Compile model
model.compile(loss='mean_absolute_error', optimizer='adam')
model()
# evaluate model
history = model.fit(scaler.transform(X_train_high), y_train_high,
batch_size=128,
epochs=5)
results = model.evaluate(scaler.transform(X_train_high), y_train_high, batch_size=128)
print('High test loss, test acc:', results)
# evaluate model
history = model.fit(scaler.transform(X_train_medium), y_train_medium,
batch_size=128,
epochs=5)
results = model.evaluate(scaler.transform(X_train_medium), y_train_medium, batch_size=128)
print(' Medium test loss, test acc:', results)
# evaluate model
history = model.fit(scaler.transform(X_train_low), y_train_low,
batch_size=128,
epochs=5)
results = model.evaluate(scaler.transform(X_train_low), y_train_low, batch_size=128, epochs=5)
print('Low test loss, test acc:', results)
Upvotes: 1
Views: 1478
Reputation: 98
The model will keep its weight until you redefine one.
def define_model():
model = Sequential()
model.add(Dense(512, input_dim=77, kernel_initializer='RandomNormal', activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(256, kernel_initializer='RandomNormal', activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(512, kernel_initializer='RandomNormal', activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(256, kernel_initializer='RandomNormal', activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(512, kernel_initializer='RandomNormal', activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(256, kernel_initializer='RandomNormal', activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(1))
model=define_model()
# Compile model
model.compile(loss='mean_absolute_error', optimizer='adam')
# evaluate model
history = model.fit(scaler.transform(X_train_high), y_train_high,
batch_size=128,
epochs=5)
results = model.evaluate(scaler.transform(X_train_high), y_train_high, batch_size=128)
print('High test loss, test acc:', results)
model=define_model()
model.compile(loss='mean_absolute_error', optimizer='adam')
# evaluate model
history = model.fit(scaler.transform(X_train_medium), y_train_medium,
batch_size=128,
epochs=5)
results = model.evaluate(scaler.transform(X_train_medium), y_train_medium, batch_size=128)
print(' Medium test loss, test acc:', results)
You can check by model.get_weights
.
Upvotes: 1