Reputation: 461
I am reading data from a dataset containing points in a plane. Each point has x and y co-ordinate.
with open('SJC324.txt') as f:
data=[]
for line in f:
x,y=(line.strip('\n').split())
data.append([int(x),int(y)])
initialisation(data)
Then I have done K-medoid clustering on those points. I have stored the medoid points in a list. Then I shall check what are the points lying within a specific radius from the medoids. In this way I am calculating the coverage.
def initialisation(data):
data=np.array(data)
D=pairwise_distances(data,metric='euclidean')
coverage=[]
for i in range(20):
covered_point=set()
M, C = kmedoids.kMedoids(D, len(data)//15)
medoid=data[M]
for temp in medoid:
for x in data:
if check_within_radius(temp,x):
covered_point.add(x)
coverage.append((len(covered_point)/len(data))*100)
print(coverage)
Here I am checking what are the points are lying within a specific radius of those medoids.
def check_within_radius(temp,x):
#temp is medoid point
#x is any random point
radius=10
if (((temp[0]-x[0])**2) + ((temp[1]-x[1])**2))< radius*radius:
return True
else:
return False
Now I am getting the following error.
<ipython-input-23-d04cdfb631a8> in initialisation(data)
16 for x in data:
17 if check_within_radius(temp,x):
---> 18 covered_point.add(x)
19 coverage.append((len(covered_point)/len(data))*100)
20 print(coverage)
TypeError: unhashable type: 'numpy.ndarray'
Upvotes: 1
Views: 5041
Reputation: 461
You are trying to find the unique elements within the 2D list. You can modify your code a bit.
from collections import Counter
temp = Counter([tuple(x) for x in covered_point])
#Counter will count the frequency of each element(1D list) in a 2D list
z = [list(k) for k, v in temp.items() if v >= 1]
'''
When one element(1D list) appears more than once in that 2D list you are
taking that only one time.
'''
coverage.append((len(z)/len(data))*100)
Upvotes: 1