Reputation: 350
Let's say I have a DataFrame and don't know the names of all columns. However, I know there's a column called "N_DOC"
and I want this to be the first column of the DataFrame - (while keeping all other columns, regardless its order).
How can I do this?
Upvotes: 2
Views: 171
Reputation: 9701
Here's a simple, one line, solution using DataFrame masking:
import pandas as pd
# Building sample dataset.
cols = ['N_DOCa', 'N_DOCb', 'N_DOCc', 'N_DOCd', 'N_DOCe', 'N_DOC']
df = pd.DataFrame(columns=cols)
# Re-order columns.
df = df[['N_DOC'] + df.columns.drop('N_DOC').tolist()]
Index(['N_DOCa', 'N_DOCb', 'N_DOCc', 'N_DOCd', 'N_DOCe', 'N_DOC'], dtype='object')
Index(['N_DOC', 'N_DOCa', 'N_DOCb', 'N_DOCc', 'N_DOCd', 'N_DOCe'], dtype='object')
Upvotes: 1
Reputation: 862901
Use DataFrame.insert
with DataFrame.pop
for extract column:
df = pd.DataFrame({
'A':list('abcdef'),
'B':[4,5,4,5,5,4],
'C':[7,8,9,4,2,3],
'N_DOC':[1,3,5,7,1,0],
'E':[5,3,6,9,2,4],
'F':list('aaabbb')
})
c = 'N_DOC'
df.insert(0, c, df.pop(c))
Or:
df.insert(0, 'N_DOC', df.pop('N_DOC'))
print (df)
N_DOC A B C E F
0 1 a 4 7 5 a
1 3 b 5 8 3 a
2 5 c 4 9 6 a
3 7 d 5 4 9 b
4 1 e 5 2 2 b
5 0 f 4 3 4 b
Upvotes: 1
Reputation: 148975
You can reorder the columns of a datframe with reindex
:
cols = df.columns.tolist()
cols.remove('N_DOC')
df.reindex(['N_DOC'] + cols, axis=1)
Upvotes: 3