Reputation: 1642
Here is a code to get the optical flow output from a stabilized video (no camera movement) and save it as a set of frames
import cv2 as cv
import numpy as np
# The video feed is read in as a VideoCapture object
cap = cv.VideoCapture("2_stable_video.avi")
# ret = a boolean return value from getting the frame, first_frame = the first frame in the entire video sequence
ret, first_frame = cap.read()
# Converts frame to grayscale because we only need the luminance channel for detecting edges - less computationally expensive
prev_gray = cv.cvtColor(first_frame, cv.COLOR_BGR2GRAY)
# Creates an image filled with zero intensities with the same dimensions as the frame
mask = np.zeros_like(first_frame)
# Sets image saturation to maximum
mask[..., 1] = 255
count = 0
while(cap.isOpened()):
# ret = a boolean return value from getting the frame, frame = the current frame being projected in the video
ret, frame = cap.read()
# Opens a new window and displays the input frame
cv.imshow("input", frame)
# Converts each frame to grayscale - we previously only converted the first frame to grayscale
gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY)
# Calculates dense optical flow by Farneback method
flow = cv.calcOpticalFlowFarneback(prev_gray, gray, None, 0.5, 3, 15, 3, 5, 1.2, 0)
# Computes the magnitude and angle of the 2D vectors
magnitude, angle = cv.cartToPolar(flow[..., 0], flow[..., 1])
# Sets image hue according to the optical flow direction
mask[..., 0] = angle * 180 / np.pi / 2
# Sets image value according to the optical flow magnitude (normalized)
mask[..., 2] = cv.normalize(magnitude, None, 0, 255, cv.NORM_MINMAX)
# Converts HSV to RGB (BGR) color representation
rgb = cv.cvtColor(mask, cv.COLOR_HSV2BGR)
# Opens a new window and displays the output frame
cv.imshow("dense optical flow", rgb[40:150,120:220])
cv.imwrite("frames_modified_2/%d.png" % count, rgb[40:150,120:220])
count +=1
# Updates previous frame
prev_gray = gray
# Frames are read by intervals of 1 millisecond. The programs breaks out of the while loop when the user presses the 'q' key
if cv.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv.destroyAllWindows()
Can someone please suggest how to quantify the difference between the frames? i.e. to estimate speed/velocity ?
Upvotes: 3
Views: 1903
Reputation: 46600
Here's an example to obtain pixel magnitude translation from .bsq
frames. You can modify the the code to input a video file instead. You are probably most interested in the get_translation()
function. Example:
Graph displaying pixel translation from frame-to-frame
Code
import numpy as np
import argparse
import os
import cv2
from matplotlib import pyplot as plt
from matplotlib import cm
import time
import random
# Usage: python translate_analyzer.py -p <filename.bsq>
# Automatic brightness and contrast optimization with optional histogram clipping
def automatic_brightness_and_contrast(image, clip_hist_percent=25):
if len(image.shape) == 3:
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
else:
gray = image
# Calculate grayscale histogram
hist = cv2.calcHist([gray],[0],None,[256],[0,256])
hist_size = len(hist)
# Calculate cumulative distribution from the histogram
accumulator = []
accumulator.append(float(hist[0]))
for index in range(1, hist_size):
accumulator.append(accumulator[index -1] + float(hist[index]))
# Locate points to clip
maximum = accumulator[-1]
clip_hist_percent *= (maximum/100.0)
clip_hist_percent /= 2.0
# Locate left cut
minimum_gray = 0
while accumulator[minimum_gray] < clip_hist_percent:
minimum_gray += 1
# Locate right cut
maximum_gray = hist_size -1
while accumulator[maximum_gray] >= (maximum - clip_hist_percent):
maximum_gray -= 1
# Calculate alpha and beta values
alpha = 255 / (maximum_gray - minimum_gray)
beta = -minimum_gray * alpha
auto_result = cv2.convertScaleAbs(image, alpha=alpha, beta=beta)
return (auto_result, alpha, beta)
# Draw flow
def draw_flow(img, flow, step=30):
h, w = img.shape[:2]
y, x = np.mgrid[step/2:h:step, step/2:w:step].reshape(2,-1).astype(int)
fx, fy = flow[y,x].T
lines = np.vstack([x, y, x+fx, y+fy]).T.reshape(-1, 2, 2)
lines = np.int32(lines + 0.5)
vis = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
cv2.polylines(vis, lines, 1, (36, 255, 12))
for (x1, y1), (_x2, _y2) in lines:
cv2.circle(vis, (x1, y1), 2, (36, 255, 12), -1)
return vis
# Return translation value
def get_translation(img, flow, step=30):
return (np.median(flow[:,:,0].T), flow[:, :, 0].T)
# Get file path
ap = argparse.ArgumentParser()
ap.add_argument("-p", "--path", help="Path to the directory")
args = vars(ap.parse_args())
if not args['path']:
print('Usage: python translate_analyzer.py -p <directory>')
exit(1)
# Extract file name
bsq_fname = os.path.split(args['path'])[-1]
if '.bsq' not in bsq_fname:
print('ERROR: Invalid bsq file. Select correct file.')
exit(1)
width = 640
height = 512
frame_count = int(os.path.getsize(bsq_fname)/(2*height*width))
x,y,w,h = 0,0,100,512
# Simulates calibrated frames to display on video frame
data_file = np.fromfile(bsq_fname, dtype=np.uint16, count=-1)
data_file = data_file.reshape((width, height, frame_count), order='F')
data_file = np.rot90(data_file)
print(bsq_fname)
fname = bsq_fname.split()[0]
prev = data_file[:,:,0].copy()
prev //= 64
prev = automatic_brightness_and_contrast(prev)[0]
prev = prev[y:y+h, x:x+w]
translation_data = []
frame_direction = []
start = time.time()
for index in range(1, frame_count):
data = data_file[:,:,index].copy()
data //= 64
data = automatic_brightness_and_contrast(data)[0]
data = data[y:y+h, x:x+w]
flow = cv2.calcOpticalFlowFarneback(prev=prev, next=data, flow=None, pyr_scale=0.5, levels=2, winsize=80, iterations=2, poly_n=7, poly_sigma=4.5, flags=0)
translation, pixel_direction = get_translation(data, flow)
prev = data
cv2.imshow('flow', draw_flow(data, flow))
cv2.waitKey(1)
translation_data.append(translation)
frame_direction = pixel_direction
index = (index+1) % frame_count
end = time.time()
print('Time:', end - start)
plt.figure()
plt.title(bsq_fname)
plt.xlabel("Frames")
plt.ylabel("Magnitude")
plt.plot(translation_data)
plt.figure()
plt.title("Pixel Direction")
plt.xlabel("Width")
plt.ylabel("Height")
plt.imshow(frame_direction.T)
plt.colorbar(orientation='vertical')
plt.show()
Upvotes: 3