Reputation: 23
I'm a beginner in Idris now, so I want to ask for help. I have definition of division:
data DividesNat : (a : Nat) -> (b : Nat) -> Type where
Div : (k ** (k * x = y)) -> DividesNat y x
and definition of prime number, based on DividesNat:
data Prime : (p : Nat) -> Type where
ConsPrime : LTE 2 p ->
((d : Nat) -> DividesNat p d -> Either (d = 1) (d = p)) ->
Prime p
Now I want to prove that 2 is prime:
prf2IsPrime : Prime (S (S Z))
prf2IsPrime = ConsPrime (LTESucc (LTESucc LTEZero)) prf
where
prf : (d : Nat) -> DividesNat (S (S Z)) d ->
Either (d = 1) (d = (S (S Z)))
prf d x = ?prf_rhs
Cases with d = (S Z) or d = (S (S Z)) are pretty simple:
prf : (d : Nat) -> DividesNat (S (S Z)) d ->
Either (d = 1) (d = (S (S Z)))
prf Z (Div (x ** pf)) = ?prf_rhs2_3
prf (S Z) (Div (x ** pf)) = Left Refl
prf (S (S Z)) (Div (x ** pf)) = Right Refl
prf (S (S (S _))) (Div (x ** pf)) = ?rr_2
but I have no idea how to prove it for d = Z
or d = (S (S (S _)))
. How can I show that these cases are impossible?
Upvotes: 2
Views: 111
Reputation: 27626
Finally I found the solution:
prf2IsPrime : Prime (S (S Z))
prf2IsPrime = ConsPrime (LTESucc (LTESucc LTEZero)) prf
where
prfGT32 : (S (S (S a))) `GT` (S (S Z))
prfGT32 = LTESucc (LTESucc (LTESucc LTEZero))
prf : (d : Nat) -> DividesNat (S (S Z)) d -> Either (d = 1) (d = (S (S Z)))
prf Z (Div (x ** pf)) = absurd (zeroIsNotDiv (x ** pf))
prf (S Z) (Div (x ** pf)) = Left Refl
prf (S (S Z)) (Div (x ** pf)) = Right Refl
prf (S (S (S _))) (Div (k ** pf)) =
absurd (gtIsNotDiv prfGT32 (k ** pf))
Upvotes: 0