Reputation: 3807
Since I need to train a model with multiple labels, I need to use loss function tf.nn.sigmoid_cross_entropy_with_logits
. This function has two parameters: logits
and loss
.
Is parameter logitsis
the value of predicted y? How can I pass this value before I compile model? I cannot predict y before I compile and fit model, right?
This is my code:
import tensorflow as tf
from tensorflow import keras
model = keras.Sequential([keras.layers.Dense(50, activation='tanh', input_shape=[100]),
keras.layers.Dense(30, activation='relu'),
keras.layers.Dense(50, activation='tanh'),
keras.layers.Dense(100, activation='relu'),
keras.layers.Dense(8)])
model.compile(optimizer='rmsprop',
loss=tf.nn.sigmoid_cross_entropy_with_logits(logits=y_pred), labels=y), # <---How to figure out y_pred here?
metrics=['accuracy'])
model.fit(x, y, epochs=10, batch_size=32)
y_pred = model.predict(x) # <--- Now I got y_pred after compile, fit and predict
I'm using tensorflow v2.1.0
Upvotes: 3
Views: 1004
Reputation: 8585
These arguments (labels
and logits
) are passed to the loss function within Keras' implementation. To make your code work do like this:
import tensorflow as tf
from tensorflow import keras
def loss_fn(y_true, y_pred):
return tf.nn.sigmoid_cross_entropy_with_logits(labels=y_true, logits=y_pred)
model = keras.Sequential([keras.layers.Dense(50, activation='tanh', input_shape=[100]),
keras.layers.Dense(30, activation='relu'),
keras.layers.Dense(50, activation='tanh'),
keras.layers.Dense(100, activation='relu'),
keras.layers.Dense(8)])
model.compile(optimizer='rmsprop',
loss=loss_fn,
metrics=['accuracy'])
x = np.random.normal(0, 1, (64, 100))
y = np.random.randint(0, 2, (64, 8)).astype('float32')
model.fit(x, y, epochs=10, batch_size=32)
y_pred = model.predict(x)
The suggested way, though, is to use Keras' loss implementation instead. In your case it would be:
model = keras.Sequential([keras.layers.Dense(50, activation='tanh', input_shape=[100]),
keras.layers.Dense(30, activation='relu'),
keras.layers.Dense(50, activation='tanh'),
keras.layers.Dense(100, activation='relu'),
keras.layers.Dense(8)])
model.compile(optimizer='rmsprop',
loss=tf.keras.losses.BinaryCrossentropy(from_logits=True),
metrics=['accuracy'])
x = np.random.normal(0, 1, (64, 100))
y = np.random.randint(0, 2, (64, 8)).astype('float32')
model.fit(x, y, epochs=10, batch_size=32)
y_pred = model.predict(x)
Upvotes: 4