Reputation: 326
Hi couldn't find anything about this specifically, sorry if its a duplicate...
How do I remove column values of a single row that contain the same information (with some exceptions)
Example:
Name Age Job How_Old Occupation Happy Married?
0 John 35 Dev 35 Dev True True
1 Sally 42 CA 42 CA False False
I would like to drop columns of different names that contain the same information except for ones that contain some obvious duplicates like a binary column.
Output:
Name Age Job Happy Married?
0 John 35 Dev True True
1 Sally 42 CA False False
Thanks, also please note that I need to perform this operation on a massvie flattend and normalised json file, so looping would be quite time expensive.
Upvotes: 1
Views: 78
Reputation: 30971
Define the following function, returning a list of column names to be deleted:
def chkColToDel(df):
# Column names excluding bool columns
cols = df.select_dtypes(exclude=bool).columns.tolist()
colsToDel = []
while len(cols) > 1:
cn1 = cols.pop(0) # Column name, left side
if cn1 not in colsToDel: # Not marked for deletion earlier
c1 = df[cn1] # The column itself
t1 = c1.dtype.name # Type name
for cn2 in cols: # Check remaining columns
c2 = df[cn2] # Column name, right side
if t1 == c2.dtype.name and c1.equals(c2):
# Same types and equal values
colsToDel.append(cn2) # Mark for deletion
return colsToDel
Then call it:
colsToDel = chkColToDel(df)
And the only remaining thing is to drop the returned columns, if any:
if len(colsToDel) > 0:
df.drop(columns=colsToDel, inplace=True)
I assume that some exceptions mentioned in your post refer actually to bool columns. If the list of exceptions is broader, change my code accordingly.
Upvotes: 0
Reputation: 862581
First exlude boolean columns by DataFrame.select_dtypes
, transpose and get duplicates by DataFrame.duplicated
per all rows, then invert mask by ~
and add removed boolean columns by Series.reindex
, last is filtered by DataFrame.loc
for all rows by first :
and columns names by mask:
m = (~df.select_dtypes(exclude=bool).T.duplicated()).reindex(df.columns, fill_value=True)
Another idea is convert values to tuples and call Series.duplicated
:
m = ((~df.select_dtypes(exclude=bool).apply(tuple).duplicated())
.reindex(df.columns, fill_value=True))
df = df.loc[:, m]
print (df)
Name Age Job Happy Married?
0 John 35 Dev True True
1 Sally 42 CA False False
Details:
#exlude boolean columns
print (df.select_dtypes(exclude=bool))
Name Age Job How_Old Occupation
0 John 35 Dev 35 Dev
1 Sally 42 CA 42 CA
#transpose
print (df.select_dtypes(exclude=bool).T)
0 1
Name John Sally
Age 35 42
Job Dev CA
How_Old 35 42
Occupation Dev CA
#checked duplicates per all columns
print (df.select_dtypes(exclude=bool).T.duplicated())
Name False
Age False
Job False
How_Old True
Occupation True
#inverse mask True->False, False->True
print ((~df.select_dtypes(exclude=bool).T.duplicated()))
Name True
Age True
Job True
How_Old False
Occupation False
dtype: bool
#added removed boolean columns with Trues
print ((~df.select_dtypes(exclude=bool).T.duplicated())
.reindex(df.columns, fill_value=True))
Name True
Age True
Job True
How_Old False
Occupation False
Happy True
Married? True
dtype: bool
Upvotes: 3