Reputation: 153
I have a dataframe with the following information:
ticker date close gap
0 BHP 1981-07-31 0.945416 -0.199458
1 BHP 1981-08-31 0.919463 -0.235930
2 BHP 1981-09-30 0.760040 -0.434985
3 BHP 1981-10-30 0.711842 -0.509136
4 BHP 1981-11-30 0.778578 -0.428161
.. ... ... ... ...
460 BHP 2019-11-29 38.230000 0.472563
461 BHP 2019-12-31 38.920000 0.463312
462 BHP 2020-01-31 39.400000 0.459691
463 BHP 2020-02-28 33.600000 0.627567
464 BHP 2020-03-31 28.980000 0.784124
I developed the following code to find where the rows are when it crosses 0:
zero_crossings =np.where(np.diff(np.sign(BHP_data['gap'])))[0]
This returns:
array([ 52, 54, 57, 75, 79, 86, 93, 194, 220, 221, 234, 235, 236,
238, 245, 248, 277, 379, 381, 382, 383, 391, 392, 393, 395, 396],
dtype=int64)
I need to be able to do the following:
'gap'
crosses 0
<12
However, I don't know how to turn this nd.array
into something useful that I can make the calculations from. When I try:
pd.DataFrame(zero_crossings)
I get the following df, which only returns the index:
0
0 52
1 54
2 57
3 75
4 79
5 86
.. ..
Please help...
Upvotes: 1
Views: 64
Reputation: 989
Just extended your code a bit to get the zero_crossings
into the original dataframe as required.
import pandas as pd
import numpy as np
BHP_data = pd.DataFrame({'gap': [-0.199458, 0.472563, 0.463312, 0.493318, -0.509136, 0.534985, 0.784124]})
BHP_data['zero_crossings'] = 0
zero_crossings = np.where(np.diff(np.sign(BHP_data['gap'])))[0]
print(zero_crossings) # [0 3 4]
# Updates the column to 1 based on the 0 crossing
BHP_data.loc[zero_crossings, 'zero_crossings'] = 1
print(BHP_data)
Output
gap zero_crossings
0 -0.199458 1
1 0.472563 0
2 0.463312 0
3 0.493318 1
4 -0.509136 1
5 0.534985 0
6 0.784124 0
Upvotes: 2