Reputation: 11
I have the following data-set:
x = 0, 5, 10, 15, 20, 25, 30
y = 0, 0.13157895, 0.31578947, 0.40789474, 0.46052632, 0.5, 0.53947368
Now, I want to plot this data and fit this data set with my defined function f(x) = (A*K*x/(1+K*x))
and find the parameters A and K ?
I wrote the following python script but it seems like it can't do the fitting I require:
import matplotlib.pyplot as plt
import numpy as np
from scipy.optimize import curve_fit
x = np.array([0, 5, 10, 15, 20, 25, 30])
y = np.array([0, 0.13157895, 0.31578947, 0.40789474, 0.46052632, 0.5, 0.53947368])
def func(x, A, K):
return (A*K*x / (1+K*x))
plt.plot(x, y, 'b-', label='data')
popt, pcov = curve_fit(func, x, y)
plt.plot(x, func(x, *popt), 'r-', label='fit')
plt.xlabel('x')
plt.ylabel('y')
plt.legend()
plt.show()
Still, it's not giving a best curve fit. Can anyone help me with the changes in the python script or a new script where I can properly fit the data with my desired fitting function ?
Upvotes: 0
Views: 177
Reputation: 647
Try Minuit, which is a package implemented at Cern.
from iminuit import Minuit
import numpy as np
import matplotlib.pyplot as plt
def func(x, A, K):
return (A*K*x / (1+K*x))
def least_squares(a, b):
yvar = 0.01
return sum((y - func(x, a, b)) ** 2 / yvar)
x = np.array([0, 5, 10, 15, 20, 25, 30])
y = np.array([0, 0.13157895, 0.31578947, 0.40789474, 0.46052632, 0.5, 0.53947368])
m = Minuit(least_squares, a=5, b=5)
m.migrad() # finds minimum of least_squares function
m.hesse() # computes errors
plt.plot(x, y, "o")
plt.plot(x, func(x, *m.values.values()))
# print parameter values and uncertainty estimates
for p in m.parameters:
print("{} = {} +/- {}".format(p, m.values[p], m.errors[p]))
And the outcome:
a = 0.955697134431429 +/- 0.4957121286951612
b = 0.045175437602766676 +/- 0.04465599806912648
Upvotes: 0
Reputation: 2119
The classic problem: You didn't give any inital guess for A
neither K
. In this case the default value will be 1 for all parameters, which is not suitable for your dataset, and the fitting will converge to somewhere else. You can figure out the guesses different ways: by looking at the data, by the real meaning of parameters, etc.. You can guess values with the p0
parameter of scipy.optimize.curve_fit
. It accepts list of values in the order they are in the func
you want to optimize. I used 0.1
for both, and I got this curve:
popt, pcov = curve_fit(func, x, y, p0=[0.1, 0.1])
Upvotes: 3