Reputation: 125
I've got 3 Dataframes I would like to merge or join by "label" and then being able to compare all columns
Examples of df are below:
df1
Label,col1,col2,col3
NF1,1,1,6
NF2,3,2,8
NF3,4,5,4
NF4,5,7,2
NF5,6,2,2
df2
Label,col1,col1,col3
NF1,8,4,5
NF2,4,7,8
NF3,9,7,8
df3
Label,col1,col1,col3
NF1,2,8,8
NF2,6,2,0
NF3,2,2,5
NF4,2,4,9
NF5,2,5,8
and what ill like to see is similar to
Label,df1_col1,df2_col1,df_col1,df1_col2,df2_col2,df3_col2,df1_col3,df2_col3,df_col3
NF1,1,8,2,1,4,8,6,5,8
NF2,3,4,6,2,7,2,8,8,0
NF3,4,9,2,5,7,2,4,8,5
NF4,5,,2,7,,4,2,,9
NF5,6,,2,2,,5,2,,8
but I'm to suggestions on how to make the comparisons more readable.
Thanks!
Upvotes: 2
Views: 147
Reputation: 28644
We can use Pandas' join method, by setting the Label
column as the index and joining the dataframes :
dfs = [df1,df2,df3]
keys = ['df1','df2','df3']
#set Label as index
df1, *others = [frame.set_index("Label").add_prefix(f"{prefix}_")
for frame,prefix in zip(dfs,keys)]
#join df1 with others
outcome = df1.join(others,how='outer').rename_axis(index='Label').reset_index()
outcome
Label df1_col1 df1_col2 df1_col3 df2_col1 df2_col2 df2_col3 df3_col1 df3_col2 df3_col3
0 NF1 1 1 6 8.0 4.0 5.0 2 8 8
1 NF2 3 2 8 4.0 7.0 8.0 6 2 0
2 NF3 4 5 4 9.0 7.0 8.0 2 2 5
3 NF4 5 7 2 NaN NaN NaN 2 4 9
4 NF5 6 2 2 NaN NaN NaN 2 5 8
Upvotes: 1
Reputation: 34046
You can use df.merge
:
In [1965]: res = df1.merge(df2, on='Label', how='left', suffixes=('_df1', '_df2')).merge(df3, on='Label', how='left').rename(columns={'col1': 'col1_df3','col2':'col2_df3','col3':'col3_df3'})
In [1975]: res = res.reindex(sorted(res.columns), axis=1)
In [1976]: res
Out[1965]:
Label col1_df1 col1_df2 col1_df3 col2_df1 col2_df2 col2_df3 col3_df1 col3_df2 col3_df3
0 NF1 1 8.00 2 1 4.00 8 6 5.00 8
1 NF2 3 4.00 6 2 7.00 2 8 8.00 0
2 NF3 4 9.00 2 5 7.00 2 4 8.00 5
3 NF4 5 nan 2 7 nan 4 2 nan 9
4 NF5 6 nan 2 2 nan 5 2 nan 8
Upvotes: 2
Reputation: 862611
Use concat
with list of DataFrames, add parameter keys
for prefixes and sorting by columns names:
dfs = [df1, df2, df3]
k = ('df1','df2','df3')
df = (pd.concat([x.set_index('Label') for x in dfs], axis=1, keys=k)
.sort_index(axis=1, level=1)
.rename_axis('Label')
.reset_index())
df.columns = df.columns.map('_'.join).str.strip('_')
print (df)
Label df1_col1 df2_col1 df3_col1 df2_col1.1 df3_col1.1 df1_col2 \
0 NF1 1 8.0 2 4.0 8 1
1 NF2 3 4.0 6 7.0 2 2
2 NF3 4 9.0 2 7.0 2 5
3 NF4 5 NaN 2 NaN 4 7
4 NF5 6 NaN 2 NaN 5 2
df1_col3 df2_col3 df3_col3
0 6 5.0 8
1 8 8.0 0
2 4 8.0 5
3 2 NaN 9
4 2 NaN 8
Upvotes: 2