Reputation: 21
First, I made a custom dataset to load in images from my dataframe (containing the image filepath and corresponding int label):
class Dataset(torch.utils.data.Dataset):
def __init__(self, dataframe, transform=None):
self.frame = dataframe
self.transform = transform
def __len__(self):
return len(self.frame)
def __getitem__(self, idx):
if torch.is_tensor(idx):
idx = idx.tolist()
filename = self.frame.iloc[idx, 0]
image = torch.from_numpy(io.imread(filename).transpose((2, 0, 1))).float()
label = self.frame.iloc[idx, 1]
sample = {'image': image, 'label': label}
if self.transform:
sample = self.transform(sample)
return sample
Then, I use pre-existing model architecture like so:
model = models.densenet161()
num_ftrs = model.classifier.in_features
model.classifier = nn.Linear(num_ftrs, 10) # where 10 is my number of classes
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
Finally, for training, I do the following:
model.train() # switch to train mode
for epoch in range(5):
for i, sample in enumerate(train_set): # where train_set is an instance of my Dataset class
optimizer.zero_grad()
image, label = sample['image'].unsqueeze(0), torch.Tensor(sample['label']).long()
output = model(image)
loss = criterion(output, label)
loss.backward()
optimizer.step()
However, I am experiencing errors with loss = criterion(output, label)
. It tells me that ValueError: Expected input batch_size (1) to match target batch_size (2).
. Can someone teach me how to properly use a custom dataset, especially with loading in batches of data? Also, why am I experiencing that ValueError? Thank you!
Upvotes: 0
Views: 162
Reputation: 1
please check the following lines:
label = self.frame.iloc[idx, 1]
in dataset defination, you may print this to re-check, is this return two int
image, label = sample['image'].unsqueeze(0), torch.Tensor(sample['label']).long()
in training code, you need to check the shape of the tensor
Upvotes: 0