Reputation: 177
i have a dataframe that Looks like this.
Task[ms] Funktion ... min max
0 1 CALL_TK_CDDio_PFC_BEGIN_1MS ... 0.640000 3.360000
1 1 vAdcD_MainFunction ... 21.280001 25.920000
2 1 vPressE_Main1ms ... 17.120001 81.279999
3 1 vPositionSensorPwm_MainFunction_Fast_In ... 9.920000 13.760000
4 1 CDDIO_1MS_1_IN ... 2.240000 5.280000
i have to select rows corresponding to this column Name. There are 146 rows df['Messvariable'] .This is the Messvariable column of dataframe
0 timeslices[0].profilerDataProcess[0]_C0[us]
1 timeslices[0].profilerDataProcess[1]_C0[us]
2 timeslices[0].profilerDataProcess[2]_C0[us]
3 timeslices[0].profilerDataProcess[3]_C0[us]
4 timeslices[0].profilerDataProcess[4]_C0[us]
141 timeslices[9].profilerDataProcess[0]_C0[us]
142 timeslices[9].profilerDataProcess[1]_C0[us]
143 timeslices[9].profilerDataProcess[2]_C0[us]
144 timeslices[9].profilerDataProcess[3]_C0[us]
145 timeslices[9].profilerDataTask_C0[us]
I want to select specific rows by this column and perfom a Operation like this
while df['Messvariable'].str.contains("timeslices[1]"):
df['CPU_LOAD']=df['max']/(10000*2)
and similarly for all the remaining timeslices with different calculations. It does not work.
str.contains Returns empty dataframe.
Is there any other method of doing it?
Upvotes: 1
Views: 386
Reputation: 11242
The main problem is regex=True default argument (pat
works a regular expression).
Just set argument to False
or you can do it using startswith()
or find()
:
df = pd.DataFrame.from_dict({
'Messvariable': ('timeslices[1]', 'timeslices[1]', 'empty', 'empty'),
'max': (1, 2, 3, 4),
})
mask = df['Messvariable'].str.contains('timeslices[1]', regex=False)
# or
# mask = df['Messvariable'].str.find('timeslices[1]') != -1
# or
# mask = df['Messvariable'].str.startswith('timeslices[1]')
df['CPU_LOAD'] = 0
df.loc[mask, 'CPU_LOAD'] = df[mask]['max'] / (10000 * 2)
print(df.head())
# Messvariable max CPU_LOAD
# 0 timeslices[1] 1 0.00005
# 1 timeslices[1] 2 0.00010
# 2 empty 3 0.00000
# 3 empty 4 0.00000
Updated.
For different calculations better to use apply
with custom function:
df['CPU_LOAD'] = 0
def set_cpu_load(x):
if x['Messvariable'].startswith('timeslices[1]'):
x['CPU_LOAD'] = x['max'] / (10000 * 2)
elif x['Messvariable'].startswith('timeslices[2]'):
pass # other calculation
# elif ...
return x
df = df.apply(set_cpu_load, axis=1)
Upvotes: 1