Reputation: 77
I'm trying to train a 3D CNN model in Keras, but i'm getting this error when I execute the cell:
ValueError: Input 0 of layer conv3d_8 is incompatible with the layer: : expected min_ndim=5, found ndim=4. Full shape received: [None, 4, 150, 150]
My input data is a numpy array with image data. Here are the shapes (I know that 53 is too few, but it's just for studying purposes):
Training data shape: (53, 4, 150, 150)
Training labels shape: (53, 1)
Validation data shape: (14, 4, 150, 150)
Validation labels shape: (14, 1)
The model I'm trying to use is:
# Create the model
model = Sequential()
model.add(Conv3D(32, kernel_size=(3, 3, 3), activation='relu', kernel_initializer='he_uniform', input_shape=(4,150,150)))
model.add(MaxPooling3D(pool_size=(2, 2, 2)))
model.add(BatchNormalization(center=True, scale=True))
model.add(Dropout(0.5))
model.add(Conv3D(64, kernel_size=(3, 3, 3), activation='relu', kernel_initializer='he_uniform'))
model.add(MaxPooling3D(pool_size=(2, 2, 2)))
model.add(BatchNormalization(center=True, scale=True))
model.add(Dropout(0.5))
model.add(Flatten())
model.add(Dense(256, activation='relu', kernel_initializer='he_uniform'))
model.add(Dense(256, activation='relu', kernel_initializer='he_uniform'))
model.add(Dense(4, activation='softmax'))
# Compile the model
model.compile(loss='categorical_crossentropy',
optimizer=keras.optimizers.Adam(lr=0.001),
metrics=['accuracy'])
model.summary()
# Fit data to model
history = model.fit(treino3d, treino3d_labels,
epochs=40)
Can someone help, please?
Thanks a lot!
Upvotes: 1
Views: 2455
Reputation: 158
Upvotes: 1
Reputation: 36584
It doesn't seem like you need Conv3D
layers for this task. Use Conv2D
instead, and use only 1 or 2 values in kernel_size
and pool_size
.
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3), activation='relu',
kernel_initializer='he_uniform',
input_shape=(4,150,150)))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(BatchNormalization(center=True, scale=True))
model.add(Dropout(0.5))
model.add(Conv2D(64, kernel_size=(3, 3), activation='relu',
kernel_initializer='he_uniform'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(BatchNormalization(center=True, scale=True))
model.add(Dropout(0.5))
model.add(Flatten())
model.add(Dense(256, activation='relu', kernel_initializer='he_uniform'))
model.add(Dense(256, activation='relu', kernel_initializer='he_uniform'))
model.add(Dense(4, activation='softmax'))
Your channel dimension comes first so you will need to tell Keras. Use this line:
tf.keras.backend.set_image_data_format('channels_first')
Or set this parameter in every Conv2D
or MaxPooling2D
layer:
data_format='channels_first'
Or permute the dimensions of the input tensor to have shape (54, 150, 150, 4)
:
np.transpose(x, (0, 2, 3, 1))
Full functioning, corrected example:
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
from tensorflow.keras.layers import *
import numpy as np
from tensorflow.keras.models import Sequential
xtrain = np.random.rand(53, 4, 150, 150)
ytrain = np.random.randint(0, 4, (53, 1))
xtrain = np.transpose(xtrain, (0, 2, 3, 1))
model = Sequential()
model.add(Conv2D(8, kernel_size=(3, 3), activation='relu',
kernel_initializer='he_uniform', input_shape=xtrain.shape[1:]))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(BatchNormalization(center=True, scale=True))
model.add(Dropout(0.5))
model.add(Conv2D(8, kernel_size=(3, 3), activation='relu',
kernel_initializer='he_uniform'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(BatchNormalization(center=True, scale=True))
model.add(Dropout(0.5))
model.add(Flatten())
model.add(Dense(32, activation='relu', kernel_initializer='he_uniform'))
model.add(Dense(32, activation='relu', kernel_initializer='he_uniform'))
model.add(Dense(4, activation='softmax'))
model.compile(loss='sparse_categorical_crossentropy',
optimizer='adam',
metrics=['accuracy'])
model.summary()
history = model.fit(xtrain, ytrain, epochs=1)
32/53 [=================>............] - ETA: 2s - loss: 1.8215 - acc: 0.2812
53/53 [==============================] - 5s 91ms/sample - loss: 1.9651 - acc: 0.2264
Upvotes: 2