Reputation: 13
So I want to make code to use a numerical method of approximation and I need the function and its derivative, so I did this:
import numpy as np
import sympy as sym
import math
x = Symbol('x')
fx = lambda x:math.tan(2*(x-5*math.pi/2))-x
f = math.tan(2*(x-5*math.pi/2))-x
dfx = lambdify (x,f.diff(x))
This is the error, it worked before when I used polynomial functions:
TypeError Traceback (most recent call last)
<ipython-input-18-e3f579396c41> in <module>
1 # INGRESO
2 fx = lambda x:math.tan(2*(x-5*math.pi/2))-x
----> 3 f = (float)(math.tan(2*(x-5*math.pi/2))-x)
4 dfx = lambdify (x,f.diff(x))
5
~\Anaconda3\lib\site-packages\sympy\core\expr.py in __float__(self)
278 if result.is_number and result.as_real_imag()[1]:
279 raise TypeError("can't convert complex to float")
--> 280 raise TypeError("can't convert expression to float")
281
282 def __complex__(self):
TypeError: can't convert expression to float
Upvotes: 0
Views: 161
Reputation: 1
Use sympi tan and pi:math library does not work well with sympy
import sympy as sym
from sympy import tan,pi
import numpy as np
x = sym.Symbol('x')
fx = tan(2*(x-5*pi/2))-x
dfx = sym.lambdify (x,fx)
This works...
Upvotes: 0
Reputation: 14500
You should be using e.g. sympy.tan
not math.tan
. The math.tan
function only accepts float
inputs and you are passing in a symbolic SymPy expression.
In [10]: import numpy as np
...: import sympy as sym
...: import math
...: x = Symbol('x')
...: fx = lambda x:sym.tan(2*(x-5*sym.pi/2))-x
...: f = sym.tan(2*(x-5*sym.pi/2))-x
...: dfx = lambdify (x,f.diff(x))
In [11]: dfx(1)
Out[11]: 10.548798408083835
Upvotes: 1